TCHING
F/6 9/2

8
;
-
«
>
-
E
W
o=t
1
-t
-4
-
g
~
=3
w
=
L

R
| B
ty
=
.,MC
IH
&3
| Bok
L
| 52
i
%

UNCLASSIFIED NOOO14-83-K-8379

AD-R176 114

mu
|||||=-_

2 8 2
':.':f b=
I

R SR T

e R e a0 8"t et et 0 e’ A R A A AT A A ML S RSSO CRAL AR AATpME e

' E January 1987 k UILU-ENG-87-2201
~ ACT-73

3 : COORDINATED SCIENCE LABORATORY 7/ 2
’ . College of Engineering /

Applied Computation Theory

AD-A176 114

AN EFFICIENT

.+ DISTRIBUTED

'~ ALGORITHM FOR

.. MAXIMUM MATCHING
"' IN GENERAL GRAPHS

v . Michael C. Wu DTIC

ELECTE[R
JAN2 71987 |, i}
'

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

OTIC FiLE COPY

spprosed or Public Releave. Distnibuuen Uniimied

.......

- . PR B S A D L L L
SRR AL N e AR ARSI A I TS B S IR AV U R R S W GRS LI PU VS VI Yo ——

ol P20l Wil ¢l ValC Rl " ey 3 Oy rovee A

Unclassified
CURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

e REPOAT SECURITY CLASSIFICATION 15. RESTRICTIVE MARKINGS
Unclassified None
20 SECURITY CLASSIFICATION AUTHOARLITY 3. DISTRIBUTION/AVAILABILITY OF REPOAT
N/A ~ - YT Approved for public release; \
‘ .;;:LASSINCATIO /OOWNGRADING SCHEDUL distribution unlimited
: FA. PERFOAMING ORGANIZATION REPOAT NUMBEA(S) 8. MONITORING ORGANIZATION REPOAT NUMBER(S)
[N
a ~7 UILU-ENG-87-2201 ACT-73
s L N/A
8a NAME OF PERFORMING ORGANIZATION [Bb. OFFICE SYMBOL | 76. NAME OF MONITORING ORGANIZATION
. (il spplicedle)
ARG Coordinated Scilence Lab Office of Naval Research
"2 University of Illinois N/A
6c. ADDRESS (City. Stece and ZIP Coda) 7b. ADORESS (City. Stam end ZIP Code)
~, 1101 W. Springfield Avenue
. % Urbana, Illinois 61801 800 N. Quincy Street
Arlington, VA 22217
88 NAME OF FUNDING/SPONSORING 80. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
"‘\ ORGANIZATION Office of (Il applicabdia)
: Naval Research N/A N00014-85-K-0570
j A8 AODRESS (City. State and ZIP Code) ' 10. SOURCE OF FUNDING NOS.
| 800 N. Quincy Street PROGRAM PROJECT TASK WORK UNIT
.) . NO.
' ? Arlington, VA 22217 ELEMENT NO o no ©
LY
- - PPy
v 'an BEETETENT WiLErTiited Algorithm for N/A N/A N/A N/A
g Max q _in Gepneral Graohs
F. §12. rersonaL auTHORS)
&4 Michael C. Wu i
| 134 TYPE OF REPORT 13n. TIME COVERED 14. DATE CF REPORT (Yr, Mo., Day) 15. PAGE COUNT
» | Technical FROM 70 January 1987 63
: .‘:’."u. SUPPLEMENTARY NOTATION
< N/A
hl COSATI COOES 18 SUBJECT TEHM_S (Confinue on reverse i/ necessary and daenaly 8y diock number
N _siEL0 cROUP | sus. GR graph, matching, cambinatorial optimization, distributed
I 0 algorithm
: :::"’. ABSTRACT ‘Continue on reverse if necessary and dentify dy dlock numbder)
B o
! We present a distributgd algorithm fo:s' /I;aximum cardinality matching in general graphs.
7> In the worst case the algorithm uses O(|V|®/®) messages. On trees the algorithm uses only

0(|v|) messages.

»

SRR /

AT AR
*
h A

"

-

e/

e

. oo

e e 8 a a s

20. DISTARIBUTION. AVAILABILTY CF a8STRACT 21 ABSTRACT SECURITY ZLASSIFICATION |

¢ -?unc-.Assweczumumveo X SAME aS APT _ OTIC USERS Unclassified X
S2 !
. !
lz:; NAME OF QESPONSIBLE INDIVIDUAL 220 TELEPHCNE YUMBENR 22¢c QJFFICE SYMBOL)
Incivae Area Code.

NONE

JX

~ ———
. DO FORM 1473, 83 APR $DITION OF 1 JAN 73 1S OBSOLETE. Unclassified
AR Pt p e p e et e b e e et e e e N e e s SEATRITY TLATSS TaT 3y GE Teeln
A AT e N N AT -\."'\' A N P R A T L U PRI R S T R K X
~ ol - o 0 - B A N ' 2 » H Y - R

A - . ot e b ke »
s . Y X da g i g . i e % . < adi e 4 A 3 oY g U,
RN PN N N LR WY I Ay} vp i Didn 4 -l b .

G X%

- €A

‘v,
L
a AL

)

~q
»

s

e

...._._._... et - v "ot TN -“Iv’l‘.) 7
A li‘ (S o, Lot dte " *

|
t
L]
g
i
’
AN EFFICIENT DISTRIBUTED ALGORITHM FOR)
MAXIMUM MATCHING IN GENERAL GRAPHS !
)
{
g
BY D'
MICHAEL M. WU -
B.S.. University of Illinois. 1985 P
Iy’
. 5
THESIS rd
(
r
Submitted in partial fulfillment of the requirements r
for the degree of Master of Science in Electrical Engineering ,
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1987
Accession For '
(NTIS GRAXI :
DTIC TAB A)
Unannounced W
Justification — 5,
B :
. L Y
Urbana, Illinois pistribution/
Availability Codes :
" hvall and/or 1
Dist Special
:-,
8
3

R

......

%
WIS RN NSNS

L
r b)]
2 v
N
R ACKNOWLEDGMENTS
1 First. I would like to thank my advisor Michael Loui. His suggestions. insight, and guidance
1 .-
'f ,\‘ were invaluable in the completion of this thesis. I would also like to thank my family for their
. support. Finally, I thank my friends for their words of encouragement. ,
-
J \-.'
:‘ -
A <
DY
£ Accession For
N [NTIS GRa&I g
N DTIC TAS
VIS Unannounced 0
! Justification |
-
18
- é By
: | Distribution/ =~ |
N ;:: Availability Codes
N ~ iAvalil and/or
~ Dist Special
NI -
5 A-/

Ll
«a

L e g
0,

v

vy

s

A LAY 4%
Yy A
| 9

R “ - e, !-'-"'Iv'-fn
~:.'|"- "\ - '.:.~ ., . N I eoa?

. I
. e T P T 8 e S AR AR Y
; o A

iv

TABLE OF CONTENTS

CHAPTER PAGE

k 1. INTRODUCGTION ...ttt ercnreceere st sttt rs st s e st s e b e e s e e s e snansas 1

) DI T I TR 54) o) 13 . W O PURR 1

| 1.2 Previous WorK.....occociivviiiviiiienniccvcnicsnenncnnee. PSR URO 1

g 1.3 Our Distributed Matching AIGOrithmcccuieuieiiiiee e 3

N 2. DEFINTITIONS ..ottt e ettt a e s e e e b e be s e s s e e e Rs e b aasnnssnans 5

i;‘ 2.1 The Model of COMPULALIONcociiiereiireissiriinitriiiie ettt e e e e e rae b e e 5

2.2 Matching Definitions.........cccoouiiviiiiiinennee e e 8

- 2.3 SENAING MESSALES -..ee-eoveneeererieiteaaerereaeaesesseesserteaeseseesatsasacesentesssessesenteseseetassaestssensersacnsessons 11
N

3. THE DISTRIBUTED MATCHING ALGORITHM........cooiiiie e, 14

ﬁ 3.1 PreprOCESSINEG...u.couiieriiiie ittt cencr ettt et ea s a e e bbbt e s aa s 14

3.2 VerteX Descriplion .. .ottt eee e e retee et e e s be s b s aan s s e e ra e bans 15

3.3 AlZOrithm OVEIVIEW oot e et e e e e et es b s s st s an s s aabe s sraessnaas 16

t: 3.4 Phase INFUALIZATIONoeeiiiieiiiiiiiece e rve e eteree e e s s errsnr et sess s s amaae s e smeetensssaanenssorsnnsneessnsnnaeron 17

o 3.5 Search fOr BrideS.......coceereririrueueieiereesreccrensererrerse et ssentseat s se sttt s seesasascenee s ssssenesnencsaens 18

- 3.6 Finding Augmenting Pathsccccoeioiivinimmmniirnttn e 22

. 3.7 Alternating Depth FirSt Searchccocoooeviniiiiiiiiiiiiiiiciiinnitcninns e 26

3.8 Common Vertices and BacKtrackingcceceereiiieiiniiiiininte ettt 31

o 3.9 Increasing the MatChing.......ccoooiiiiiiiiiinii e 37

\\i 3.10 BlOSSOMS.ceeeiiiietiieeiiirrereereeseteeeeeeeeraaes s eersrerreoseee e e s e m et teaa e e an e st et ae et s e s e n R e e s e aa s e s e annre s 38

, B AN ALY SIS ettt e s ne e e e e n e R e a s s ae e e enes 47

___', T 30 T 0Y o 2 A8 1 =SSO 47

4.2 Message CompPIeXily ..ottt er e e s rece et s be s s srae e st e s ras e eanes 47

. 4.3 Time COMPIEXILY oottt ettt e e et e e s e e e e mresesae s s s ta s s ae e s s s s s e e n b e e ear s 52
-*‘

5. MAXIMUM MATCHING ON TREES ...ttt e 53

X 6. CONCLUSIONS ...cocovrecereeeeeevereessmsssssssssmssssssssssse s 58

o REFERENCESccoumueecetamaeeemssaessesssseeeesss s sssesse e eesss e asses s esss s sesenasons 59
&
b
I"
-
o

R .
[N :".1

)

L4

P

W 3 LTAC RN R SSRGS TR TR TR T TN) - TR e . e
k{t{;‘:’ PN NI N AN I B 36, W A0 S S R R 28 RN S .

R

<

»
<4

O ol

.o

&

[XA

o

L an ah ae

ala s

0t X

PRV LUV LT E VAL WL YT WEYERE Y

CHAPTER 1

INTRODUCTION

Ay
1.1 The Problem . '

o

o
> Let G =(V, E) be a finite. undirected. connected graph with the set of vertices V and the set

———

of edges E. A matching M is a subset of E such that no two edges of M are incident on a common

C P
b a

¥} 1
vertex. A maximum matching is a matching of maximum cardinality. .-We presents,?n efficient dis-

tributed algorithm for finding a maximum matching in a general graph. - . oA

)

1.2 Previous Work

The maximum matching problem is a fundamental problem of combinatorial optimization and
has been extensively studied. We summarize some of the previous work done in maximum match-

ing algorithms and distributed algorithms.

1.2.] Sequential matching algorithms

For maximum matching in bipartite graphs. the algorithm of Hopcroft and Karp (1973) is the

fastest known with a running time of O(1V |21 E1).

A more difficult problem is computing maximum matchings in general graphs. Among the
sequential algorithms that have been proposed for finding maximum matchings in general graphs
are those of Edmonds (1965), Kameda and Munro (1974), Even and Kariv (1975). Gabow (1976).
and Micali and Vazirani (1980). For general graphs. the algorithm of Micali and Vazirani is the

most efficient known with a running time of O(1V IV21 £ 1).

We give an overview of the algorithm of Micali and Vazirani. Peterson (1985) gave an expo-
sition of their algorithm. To find a2 maximum matching, the algorithm proceeds in phases. During
each phase. 'he algorithm finds a maximal set of vertex disjoint minimum length augmenting paths

and increases the matching alony these paths. Hopcroft and Karp (1973) proved that O(:{ 113)

R R RS S TS PO r

~

i A3
Ao
;., 2
L]
W
i
iy
¢

such phases suffice to find a maximum matching. Each phase of .the algorithm runs in O(|E)

time. Thus. the running time of the algorithm is O(IV 1Y21E).

»

;‘l
!
! 1.2.2 Distributed maiching algorithms
)
. Recently. Schieber and Moran (1986) presented a distributed algorithm for finding maximum
-
:5. matchings in general graphs. No efficient distributed algorithms for the maximum matching prob-
L’ lem was known before. Their algorithm runs in time O(1V | log 1V 1), assuming all the processors
" are synchronized. internal processing takes zero time, and each message arrives at its destination
gl
-" 3 . . . - . - .
W exactly one time unit after it has been sent. The communication complexity of their algorithm
..
' depends upon the model. In the memory restricted model. where the amount of storage at each
r vertex is bounded by a linear function of its degree. the communication complexity is
. O(1V I21E |) messages. If the amount of storage at each vertex is unrestricted. then the communi-
’
% cation complexity is OCIV I [E | log |V |) messages.
’ Their observation is that. unlike the sequential case. in a distributed network, a search for a
X -
S single minimum length augmenting path can be made faster than a search for a maximal set of
N
~ minimum length augmenting paths. This is because in the sequential case O(1 £ |) time is needed to -
P, find either one augmenting path or a maximal set of such paths. In the distributed case. however. -
. the search for augmenting paths can be made in parallel. Thus an augmenting path of length { can N
- .\
%, be found in O(l) time. whereas O(1V 1) time would be required to find a maximal set of such
.
) paths. Using this observation, they showed that O(1V |) iterations of finding one minimum length N
‘
! augmenting path are faster than O(!V I V/2) jterations of finding a maximal set of such augmenting -~
Y 9
paths. -
o
o 0
L)
2 1.2.3 A technique for designing distributed algorithms s
I‘
- \'
Awerbuch (1985a) presented a technique called a syachronizer for designing efficient distri- !
5 buted algorithms in asvnchronous networks. The synchronizer allows algorithms for asynchro- ‘o
K. N
Al K .
3 nous networks 1o be designed as if thev were to he executed on a svnchronous network. The ° ;
1
N
f "

R T O S L I G ROUERCHUC SRR
IR N R IREATI S) M AT AN TSN, & A M NI ML SN AN

et Set rut ¥ S ke gt Yav e Be< Bt tak Pl See gt [AP A e W PRI (ARAN TSP NI AT WAL WUV P VWL AT H « WEWa - i S
3
@ motivation behind using a synchronizer is that asynchronous algorithms often have time or com-
! munication complexities much worse than their corresponding synchronous algorithms. Thus. if
the additional complexity introduced by the synchronizer is small as compared with the complex-
N
&'_ ity of the synchronous algorithm, then an efficient distributed algorithm can be obtained sy adding
- a synchronizer to the synchronous algorithm.
. Awerbuch demonstrated the power of the synchronizer on distributed algorithms for breadth :
::- first search and maximum flow. For breadth first search. a previous distributed algorithm by
ey
. Gallgher (1982) has a communica*’ wplexity of |V | |E | messages and a time complexity of
Ly
'{: 1V 1. The distributed algor .aned by using a synchronizer with a parallel breadth first :
; search algorithm by Eckstein (1977) improved the communication complexity to k |V 12 messages. :
. . , . logatV I
where k is a parameter,2 € k £ 1V |. The time complexity of the algorithm is IV | gk
. :\ i ‘
For maximum flow, Segall (1982) presented an algorithm with a message complexity of :
. IV 11E\? and a time complexity of !V 1?1E |. The algorithm obtained by using a synchronizer
, b
. with the parallel maximum flow algorithm by Shiloach and Vishkin (1982) has a message complex-
N)
AN _ R _ , logalV I
ity of £k IV |° and a time complexity of IV |° —— .
" log,k
N
1.3 Our Distributed Matching Algorithm .
"o , .
:A. , i Lo : .
)) In designing our distributed matching algorithm. weare mainly concerned with the communi-
$: cation complexity. The maximum number of message transmissions determines the efficiency of the .

lit‘,
algorithm. Wtconcentrale<’on minimizing the number of messages for two reasons. First. in an

8
.

(ex,

actual distributed system, the communication time would likely be much greater than the process-

ing time. Second, in commercial computer networks. common carriers often charge by the number

'.' J..Jsd

of packets or bits rather than by time.

i
& We designed our distributed matching algorithm by integrating Awerbuch’s syvnchronizer X

o technique with the sequential matching algorithm of Micali and Vazirani. We could not directly

PX RN

ML ™ R®a™ ~ -‘ . -" \\ M ‘J-‘ .-.';-\."' R W S
N N N A R A0 T IaTa

make a synchronized implementation of the algorithm of Micali and Vazirani. however. because of

differences in the characteristics of distributed and shared-memory networks. Also, we
significantly improved the efficiency of the distributed algorithm by modifying the straightforward .
implementation of certain procedures of the sequential algorithm. The communication complexity
of our algorithm is O(1V 15/2) messages with bounded storage at each vertex. Since the graph is o
connected, |E i 2 IV | - 1. Thus, the communication complexity of our algorithm is better than

that of the algorithm of Schieber and Moran. Our algorithm, however, searches for augmenting 3
paths sequentially. Thus. the time complexity of our algorithm can be as large as the message com- -

plexity. O(1V [372),

.—e..__.({¢-:ﬁ$,{_

PRI AL

R X WEB

%

2 A A e e

1

v

S

[t BV

¥y ¥
Y

i

hre
a 18

PR
N

WETTS r A

ORI

’)'_

e A R
AR

§

'1‘14-

NI

o b.a'iha'hat® o' &' 2 g% 298 98 a¥) 2" > a w8y Gy fad Pat Bub Put Ba¥ Bab B8 B 60 G hep Ain b b patin At by Sy \

CHAPTER 2

DEFINITIONS

2.1 The Model of Computation

We present our model of distributed computation. We first give a general description of the

model and then give some precise definitions.

2.1.1 Overview

The distributed computation model is an asynchronous network described by an undirected.
finite. connected graph G =(V', E) with the set of vertices V and the set of edges £. The set of
vertices V' represents the processors of the network, and the set of edges E represents the bidirec-
tional communication links between the processors. Thus. the network topology determines the
graph. In our discussion, we will refer to the processors as vertices and the links as edges. An edge

(x .y) means that there is a link connecting processors x and y .

A vertex x is a neighbor of vertex y if there is an edge (x,y) in E. Each vertex has a dis-
tinct identity and knows the identities of its neighbors. Neighboring vertices can send messages to
each other along the same edge in both directions simultaneously. A vertex can send messages to
more than one neighbor simultaneously but can receive messages only one at a time. The edges are

assumed to be error free so messages arrive in sequence without error after an unpredictable but

finite delay.

Local computations are assumed 1o require negligible time. We make this assumption because
in an actual system. the communication time would likely be much greater than the processing

time. Euach vertex receives messages from its neighbors. performs local computations, and sends

messages 10 ils neighbors.

The communication complexity of a distributed alyorithm s the maximum possthie number

of messages all vertices of the distributed network may send during the execution of the algorithm.

« e . PR P P L St et e et et .
LN P . L LU L S A _,.‘._..._._.‘_.._..._.

- u-l..‘h't'u.. . l.-.i..~'| - .
Ca e P abat At aAnl ataleiadadata

[

]
27e e 3 8 &

. ¥
o "n ll

.
‘u‘n

»
2

-

} XXM A

Ay

Waes

*
Py

f‘!f‘l(. l"l'.' " .

03
WIS

b
'I

R
e s 4 0

.

-.- 'n ..l)l 'l

- -".

. M
o~
oy
LW

The time complexity of the algorithm is the maximum possible execution time of the algorithm
assuming a message sent by the source requires exactly one time unit to arrive at its destination.

This mode! appears in Awerbuch (1985a), Schieber and Moran (1986), and others.

We use the memory restricted model of Schieber and Moran (1986). where the amount of
storage at each vertex is bounded by a linear function of its degree. The length of each message is

proportional to log |V 1.

Note that if both the message length and the amount of storage at each vertex are unres-
tricted. then after a spanning tree is constructed. only O(1V |) messages are needed to find a max-
imum matching. Since the amount of storage at each vertex is unrestricted. we send all the infor-
mation about the network topology to the root. Then the root computes a maximum matching and

sends the result to the rest of the network.

To convey the network topology to the root. each vertex sends a message Lo its parent along
the spanning tree. A vertex v sends a message which gives the neighbors of v and the neighbors of
each of the descendants of v. After the root receives a message from each of its children in the
spanning tree, the root knows the topology of the network and computes a maximum matching.
Then the root sends a message which gives the solution to each of its children in the spanning tree.

A vertex receiving the solution sends it its children in the spanning tree.

If the amount of storage at each vertex is unrestricted. but the message length is restricted.
then after a spanning tree is constructed, O(IV | 1E) messages are needed to find a maximum
matching. Again we send all the information about the network topology to the root along the
spanning tree, and the root computes the maximum matching. The method is the same as before
except that each message gives the information about only one edge. i.e.. one pair of neighbors.
Since there are | £ | edges. there are O(| E |) messages. Since the vertices send the messages along
the spanning tree. the total number of messages is OUIV ['£ 1), This justifies restricting both the

message length and the amount of storage at each vertex.

49

4

3

vt

)
£

»

b &

W

<

h
W

,
5

P

V)

Lt
s
-

L

r

-

&7

LA

2.1.2 Definitions

We now give a precise definition of the distributed computation model. Our definition is simi-
lar to the one presented in Gafni et al (1984). A distributed system 1s a triple (PROCS. LINKS.
MSGS). where

PROCS is a finite set of Vel‘llCCS‘

LINKS € PROCS x PROCS is a set of edges

MSGS is a set of messages.

An event is the transmission or arrival of a message at a vertex x. An event is specified by

giving the vertex, the edge. the message, and whether the event 1s a transmission or arrival.

Each vertex has a current state. The stare of a vertex x is specified by a sequence of zero or

more events at x. A state of a vertex x has the form

<ej.ea e >,

where each event e, is an arrival of a message at x or the transmission of a message by x. Note

that the state of a vertex does not depend upon the time between events.

Let s be the current state of x. When an event e occurs at v, x makes a transition from the
current state s (o a new stale by concatenating ¢ onto the end of v . let STATLS be the set of

states.

A configuration is a function C that specifies a state for each vertex and the messages on each
edge. lach edge has either zero or one message 1n transit in each direction. If all vertices have the

empty state € and no messages are in transit, then the configuration is initial.

A distributed algorithm is a function

A STATES = (MSGS x) U {2

that specifies what a vertex does in any state. If a vertex © v in state » . then v erther sends a mes-

sage to aneother vertex as specttied by VTR 2 MSGS > B oand changes state or dves nothing

...
e
‘A

o
Pravy.

4 %
b N

LA

: ,.‘.
r {1!.{-.,‘.1 \"- %!

A,

¥

Gy
¢ s

(RN

M

A5
)

SN

A
a

Y EH S

1o

s 7 ¢ ¢ 8

LA

|

oY

S

rf;l.'.‘.‘-'-'-'

»

A Na® ¥

(A(s)=2).

An execution of an algorithm A is a finite sequence of configurations
C().C[- T ’Cf »

starting from an initial configuration C, such that for all i, C,,, is obtained from C; by either the
transmission or arrival of a message at some vertex x. An execution terminates in a final

configuration C, when every vertex of the system is in a state in which it does nothing and no

messages are in transit.

The message complexity of an algorithm A is a function f(1V I, [E 1) that gives the max-
imum number of messages sent in executions of A on a distributed system with |V | vertices and
|E | edges. The time complexity of an algorithm A is a function g(1V |, 1 E |) that gives the max-
imum amount of time required for executions of A on a distributed system with 1V | vertices and

|E | edges assuming that each message arrives at its destination exactly one time unit after it has

been sent.

2.2 Matching Definitions

Let M be a matching in G. The following terms are defined for a fixed matching M. An edge
e is matched if e € M and freeif e € M. A vertex v is matched if a maiched edge is incident on
v and exposed if no matiched edges are incident on v. If the edge (v . w) is matched. then v is the

mate of w and vice versa.

In Figure 1, straight lines represent the free edges and dotted lines the matched edges. The
free edges are (A, C), (B. C). (D. E). and (D. F). The edge (C. D) is a matched edge. Vertices A. B.

E. and F are exposed and vertices C and D are matched. Thus C is the mate of D and vice versa.

An dternating path is a path (v, va, -) whose edges (v, v,). (w2, v3), -+ - are alternately
in M and not in M. An augmenting path is an alternating path whose first and last vertices are

exposed. In Figure 1, the path (A, C. D, F) is an augmenung path. Two paths are disjoine 1l they

et et e M.t ate "
- - . v F O R L .
. e Sate . .

-'4’.'.‘ -
I e A A AR

* -ty . PR C . . . T . .- St o &t
AR P NI, N _\':-:"sf_g"- AP AP T KL TR AT A Wy VLYY
RPN AN TR . .

Y 2

l,

A
]
L

)
L

-2

e
N

MALL

I

AL |

W
PRI

h A
v

&~

s a s

]
.

[";."A

RN AR ¢
M ‘s a

AR

L N

Figure 1. A Matching M

have no common vertices.

The evenlevel of a vertex v is the length of the minimum even length alternating path leading
from v to an exposed vertex. if any, and infinite otherwise. The oddlevel of a vertex v is the length
of the minimum odd length alternating path leading from v to an exposed vertex. if any. and
infinite otherwise. The level of a vertex v is the smaller of evenlevel (v) and oddlevel (v). Thus
level (v) is the length of the minimum length alternating path leading from v to an exposed ver-
tex. A vertex v is outer if level (v) is even and inner if level (v) is odd. If v is outer, then the

otherlevel of v is oddlevel (v) and vice versa.

A blossom is a circuit of odd length that is maximally matched. A blossom with length 2k +

1 has & matched edges. Figure 2 contains the blossom (C. D. E. F. G).

An edge (v.w) is a bridge if either both evenlevel (v) and evenlevel (w) are finite or both
oddlevel (v) and oddlevel (w) are finite. The discovery of a bridge signifies the presence of either
an augmenting path or a blossom. The tenacity of a bridge (v.w) = min {evenlevel (v) «

evenlevel fw), oddlevel (v) + oddlevel (w)} + 1. I there are no blossoms. then the tenacity of

bridge (v . w) s the length of the minimum length augmenting path containing bridge (v . w 1.

SNy

(Y
» DI

e PP X TARARS

A 3

[AR A

IS % SO Y 4

v
D

T . v v

SN A ‘s

54
ARRAAN

N
v, ."‘\"‘\" R
e« & & & A .4

Figure 2. A Blossom

e
'
.

y
.

P

of ..'

3l \f

A vertex u is an anomaly of a vertex v if v is inner, u is outer. ¥ and v are neighbors. and

AN

.i Y,

evenlevel (v) > oddlevel (v). In Figure 2. H is an anomaly of G since evenlevel (H) = 4 and

\. LN

4

oddlevel (G) = 3.

‘0
&

We present two theorems about augmenting paths.

Stu’
L3
-~ 'n:‘t.’

Lo)

Theorem 2.1: Let P be the edges of an augmenting path with respect to a matching M in a graph

I‘_-'

G. Let M" = M ® P be the matching with the set of edges e such that eithere € M ande € P or

e € M ande € P. Then M’ is a matching of cardinality IM | + 1.

The following theorem is due to Berge (1957):

PR

L0

Berge’s Theorem: A matching M in a graph G is maximum if and only if there is no augmenting

path in G with respect 10 M .

.. aeaman v e e
AR TR LR AT NN

J‘.: ..v' .'v’_.v"\f\f.'f
N~

kY
11)
il [4
< b
o Papadimitriou and Steiglitz (1982) gave clear proofs of these theorems. v
! We define increasing the matching along P to be the process of converting the matching M z
LA
. into the matching M " as follows. We reverse the matching of an edge by making a matched edge i
% free. and vice versa. The maiching M is converted into the matching M by reversing the maiching u
- of the edges in P. In Figure 3a (Peterson, 1985) is a matiching M. The result of increasing the ‘
‘e S
- s
matching along the augmenting path (C, D, E, F) is the matching M " shown in Figure 3b.
- :
2.3 Sending Messages .
.1‘ .
-"\ 'a
N We give some definitions for sending messages. When a vertex v forwards a message MSG to -
by a vertex w, v sends a message MSG to w identical to the one that v received. We now describe y
-
o
-
.
e :
2 %
,
b
;’}
~ ;
N »
»
g :
(a) (b)
- v ’.I
~ "
“u .-‘
- Figure 3. Increasing the Matching ht
'i L}

- e -y

. NC “ay s e e R N UL P e S T S)
G A N T B SR N L S AN G N oY, L O

o e

LA)
Y W .y N~

‘¢

K

two message passing paradigms.

Suppose we have a spanning tree T’ of the network. A broadcast is a communication pattern
in which the root of 7 sends a message MSG and all vertices of 7 eventually receive MSG. To per-
form the broadcast. each vertex v receiving a message MSG forwards MSG to each of v 's spanning

tree children. The broadcast is initiated by the root and terminates at the leavesof T .

A convergecast is a communication pattern in which the root receives a message from a child
in T only if all descendants of the child have sent convergecast messages. A convergecast can be
thought of as being the opposite of a broadcast. A vertex v sends a convergecast message only after
all descendants of v have sent their convergecast messages. The messages in the convergecast, how-
ever, need not be the same. To perform the convergecast, a veriex v sends a convergecast message
10 its parent in 7 after v has received a convergecast message from each of its children in 7. The

convergecast begins at the leaves of T, which have no children, and terminates at the root.

Suppose we have the spanning tree shown in Figure 4. To perform a broadcast of a message
MSG. vertex A sends message MSG to vertices B and C. B forwards MSG to D and C forwards

MSG to E. F. and G. To perform a convergecast. vertices D. E. F, and G send convergecast messages

Figure 4. A Spanning Tree

I - -« = - I l = et - tu > . ™ - . . N AU .’ V-.
RN *.\‘-'v A rre 3 AR) RAC A “-f.'.-- A TN
}gﬂ.{\'\t&‘-‘.}\{‘ f&v ~ﬁ.r f_\ \'t& ‘\.{l. g.t ﬁf\,& N L.\ L&.&"\. N N \-.‘ \"L -\A L.& _& PP JEROTIUL YT, You L)y e .

s
L <.

» ,‘ .l' 'D

y e N

)

J8

A

I ']

Y

o,

i |

»

p

)

b-cen

0

o

>

0t oV Ha Bt Bl e T Pt e Pt Tt G Y RV 6 RS w S o) 0ob- 0% Sob B0t b S Gob Sud e DB Bot Bet et gat byr B0 het Bate et RS §0 & Rt A

13

to their parents in 7. B sends a convergecast message to A after receiving a convergecast message
from its child D. and C sends a convergecast message to A after recetving convergecast messages

from its children E. F, and G.

.
P s a a axEmE o & & a9 _.

PPy

CHAPTER 3

THE DISTRIBUTED MATCHING ALGORITHM

3.1 Preprocessing

To implement Awerbuch’s synchronizer technique. we need to construct a Synchronization
network. Since the vertices synchronize by sending messages to each other, we minimize the
number of messages by using a spanning tree for the synchronization network. We select the root

of the spanning tree to be the leader of the network.

The leader synchronizes the various steps of the algorithm via broadcasts and convergecasts.

The leader begins a step by performing a broadcast and recognizes the end of the siep through a

convergecast.

In our algorithm, we are not concerned about the construction of the synchronization tree.
Thus we will assume that a spanning tree ST of the network has been constructed and the root
selected to be the leader of the network. The ST-parent of a vertex v is the parent of v in the
spanning tree S7. Similarly. the ST-children of v are the children of v in ST and the S7-

descendants of v are the descendants of v n $7.

There are distributed algorithms for constructing spanning trees. Gallagher. Humblet. and
Spira (1983) presented a distributed algorithm for constructing minimum weight spanning trees
requiring at most 5!V [log IV | + 21/} messages. Note that we do not need the mimmum
weight. Their algorithm maintains a distinguished edge called the core to initiate the cycles of the

algorithm. When the spanning tree is found, we can choose a vertex of the core to be the leader.

Awerbuch (1985b) presented a distributed algorithm for constructing a depth first search
spanning tree which uses at most 4% messages. The algorithm begins at the root and adds ver-

tices to the tree until all the vertices have been added.

v vy
et

\]

o~

N

NPT YY)
XY

LA

!

AN SR 2

T, e

Ss*;\\\ -
o

l.'lsl -l »

AR

LA

.‘.’o

.
4

ALY

o

]

]

A

N

A

44

ho

NP

.
" e
»

'l
N

3 Sd el *, g e T
“2ia 34" IR U N L GLRN A X DI I U W T W

15

3.2. Vertex Description

We give a description of the vertices representing the processors of the network. We use the
memory restricted model of Schieber and Moran (1986) where the amount of storage at each vertex
is bounded by a linear function of its degree. We allow a vertex a fixed amount of storage for each
incident edge. This is a reasonable assumption since a vertex with a larger number of edges
requires a proportionately larger amount of storage for variables and buffers. The vertices have
unique identities but are otherwise identical. Every vertex executes the same algorithm with the
exception that the leader must also synchronize the remaining vertices. The algorithm at each ver-

tex can easily be made the same, however, if we include a test for the leader.

The following is a description of the local variables maintained by each vertex v. The func-

tions of some of the variables will be further explained as they are used.

evenlevel (v) evenlevel of v

oddlevel (v) oddlevel of v

level (v) minimum (evenlevel (v), oddlevel (v))

neighbors (v) the neighbors of v

erased (v) true if v is erased

activeneighbors (v) the neighbors of v that are not erased

predecessors (v) the predecessors of v

visited (v) the bridge vertex that last visited v during the phase
mate (v) if v is matched. the mate of v

bridges (v) the vertices that form a bridge with v

anomalies (v) the anomalies of v

blossom (v) if v belongs to a blossom. the base of the blossom
stparent (v) the ST-parent of v

stchildren (v) the ST-children of v

dfsparent (v) the depth first search parent of v

dfschild (v) the depth first search child of v

devchild (v) the child of v along the path to the deepest common vertex
counter (v) message counter

barrier (v) used to prevent redundant backtracking beyond v
altpath (v) true if v is on an alternating path to an exposed vertex

We assume that neighbors (v). stparent (v), and stchildren (v) are set during preprocessing.

Their values remain the same throughout the algorithm.

ST A A e e T Tl N NN T e T
PR AT AT AR A - : el e
WANE at Bty g

I A SR
..,~ . \,__.‘,*..,-v_,‘-_.

P A P, S0 e K
PPV UL VIRV VP T VIV T Y PO SN |

16
3.3 Algorithm Overview

We give a high-level overview of the algorithm. To find a maximum matching. the algorithm
proceeds in phases. During each ptase. the algorithm finds a maximal set of disjoint minimum
length augmenting paths and increases the matching along those paths. Note that during each phase
we need to find only a maximal set of such paths. not a maximum set. Hopcroft and Karp (1973)

proved that O(1V |Y2) such phases suffice to find a maximum matching. The phases are numbered

Next, we describe the execution of one phase of the algorithm. The objective of each phase is
to find a maximal set of minimum length augmenting paths. To find augmenting paths. the algo-
rithm performs breadth first search from exposed vertices to find bridges. If any bridges are found.
the algorithm tries to find augmenting paths containing each bridge one at a time. The algorithm
increases the matching as each augmenting path is found. If any augmenting paths are found dur-
ing the current phase. then a maximal set of minimum length augmenting paths is found. and the

algorithm proceeds to the next phase. If no augmenting paths are found, then the matching is max-

imum (Berge. 1957).

To find bridges. the algorithm performs breadth first search from exposed vertices. The search
proceeds one level at a time. The search levels are numbered 0. 1, 2. The initial search level of
each phase is 0. When the current search level is i . a search is made for all bridges at level i. If a
bridge is discovered. then the algorithm performs depth first search from the bridge vertices to find
an augmenting path. If no augmenting paths containing bridges at the current search level are
found. then the breadth first search proceeds 10 the next level. If an augmenting path is found.

then the algorithm begins a new phase.

To find an augmenting path containing 4 bridge. the algorithm performs depth first search
from the bridge vertices of the bridge to find alternating paths to exposed vertices. The algorithm
searches for augmenting paths one at a time. It the algorithm finds two disjoint alternating paths

leading from the vertices of a bridge to exposed vertices. then the algorithm increases the matching

‘Ivl‘- “

LIRS Y

o,

Iy

2

I

P ata Al MRS S L 4

T s e e T NN T S Nt ST P e L e A

‘-

o e T P T I W W T L T WL WS

17

[%% S

along the augmenting path consisting of the two alternating paths and the bridge. To increase the

. matching, the algorithm reverses the matching of Lhe edges along the augmenting path. If two dis-

joint alternating paths from the bridge vertices to exposed vertices cannot be found. then there is

:; no augmenting path. There may. however. be a blossom.

e The algorithm continues 10 increase the matching until a maximum matching is obtained. If
"

»

the matching is maximum. then there are no augmenting paths (Berge, 1957). The algorithm recog-
::\ nizes that the matching is maximum and halts when the breadth first search for bridges reaches a

level { such that no vertices are at level .

We now describe the matching algorithm in detail. We examine how the algorithm proceeds

- during a phase p .

e 3.4 Phase Initialization

. The leader L starts a phase p by broadcasting a STARTPHASE (p) message. When a vertex

v receives a STARTPHASE (p) message. v forwards the message to its ST-children and initializes

its local variables as follows:

. evenlevel (v) 1= o0

N oddlevel (v):= oo

’ level (v) 1= o0

. predecessors (v) =@

e activeneighbors (1) := neighbors (v)
anomalies (v) =@

visited (v) = nil

. erased (v) := false

" bridges (v) =@

barrier (v) := nil

altpath (v) := false

dfsparent (v) := nil

dfschild (v) :=nil

dcvcehild (v) := nil

if phase p = O then mate (v) := nil
if v is exposed then evenlevel (v) =0, level (v) :=0

&

« o
]

During the algorithm. once a vertex v becomes matched. v remains matched throushout the

[

remainder of the algorithm. But v mayv be matched with a different vertex during ditferent phases

Ve . « . I el K o - - - .- - -~ - o '.7 .
‘AN R
Y \' {bts(f\.\ k{‘ “. L{L(Lf‘_ L{MJ.AL‘L‘L' L‘kf. {‘(-s;(PO AP AP A

. n
Ly

Pdrds

18

Since the augmenting paths found during each phase are disjoint, the mate of a vertex changes at

mosl once per phase.

Vertex v convergecasts a READY message after v has initialized its variables and received a
READY message from each of its ST-children. The phase initialization is synchronized via the

STARTPHASE and READY messages.

3.5 Search for Bridges

We describe the search for bridges at level i . For now we consider the case where there are
no blossoms. This will simplify the discussion. We examine the general case with blossoms in Sec-

tion 3.10.

To search for bridges. the algorithm performs breadth first search from exposed vertices. To
perform the search, after L receives a READY message from each of its ST-children. L sets the
current search level i and broadcasts a STARTBFS (i) message. The initial search level for each
phase is 0. The STARTBFS (i) message signals vertices at level i to extend breadth first search to
level i = 1. Thus when i =0, exposed vertices = start breadth first search since they are the only

ones with level (z) = 0. During the first phase. all vertices are exposed.

A vertex v at level i receiving a STARTBEFS (i) message searches for bridges at level i . Ver-
tex v contlinues the search along alternating paths to those vertices that are unsearched and
unerased. let u be the vertices in activeneighbors (v) - predecessors (v). Then the vertices u are
unsearched and unerased. To continue the search along an alternating path. if { is even. then v
sends BRIDGESEARCH (v . i + 1) messages 10 those vertices v such that the edge (v, u) is free. If
i is odd. then v sends BRIDGESEARCH (v, i + 1) messages to those vertices ¥ such that the edge

(u.v)is matched. Vertex v sets counter (v) to the number of BRIDGESEARCH messages it sent.

A verlex u receiving a BRIDGESIFARCH (v j) message. where j is { + 1. proceeds as {ol-

lows. It j 1s even and evenlevel (1) = oo, then u ~ets evenlevel (u) =) and adds v 10 predeces-

sers (w). Similarlyv. it j s odd and oddlevel (1) = oo, then v <ets oddlevel (w) = 7 and adds v 10

Py
L

L
ta's's

%y
r'}\J .

19

predecessors (u). If necessary. u updates level (). The predecessors of u are the vertices v at

level () - 1.

If j is odd and j > oddlevel (z). then v is an anomaly of u since evenlevel (v) 2

oddlevel (¢) + 1. Thusu adds v to anomalies (v).

Note that if vertex u receives more than one BRIDGESEARCH message at the current search
level. then all the BRIDGESEARCH messages will have the same j. Also note that the search for
bridges discovers the vertices at the next search level. Thus if no augmenting path is discovered at
the current search level i, then the vertices at search level i + 1 will already have been identified.

and L need only broadcast a STARTBFS (i + 1) message to continue with the next level of the

breadth first search.

After u receives the BRIDGESEARCH (v, j) message. u determines the edge (u.v) is a
bridge if either j is odd and evenlevel (x) is finite or if j is even and oddlevel (v) is finite. In the
case without blossoms. if the edge (u.v) is a bridge. then level (¥)=j - 1 since level (u)=

level (v). Note that for each pair of neighbors 1 and v that form a bridge. each vertex sends a

BRIDGESEARCH message to the other.

If u determines that the edge (x.v) is a bridge. then u adds v to bridges (1). Vertex u
deletes v from predecessors(u) since v is at the same level as v. Then u sends a
BRIDGEREPLY (u, bridge) message to v to inform v that the edge (v .v) is a bridge. If u deter-
mines that the edge (¢ . v) is not a bridge. then u sends a BRIDGEREPLY (u . nobridge) message to

v. Vertex u sends a BRIDGEREPLY message to each neighbor from which it received a

BRIDGESEARCH message.

A vertex v receiving a BRIDGEREPLY (u , bridge) message adds u to bridges (v) and decre-
ments counter (v) by 1. A vertex v receiving a BRIDGEREPLY (u . nobridge) message just decre-
ments counter (v). The variable counter (v) maintains the number of neighbors to which v sent

BRIDGISEARCH messages that have not returned BRIDGEREPLY messages. Vertex v continues (o

receive BRIDGERFPLY messages unul counter (v) = (.

B

.

PP
PR IR

~ B TV 8

e« e rr 55 "

L - Badl” S B Sl Aalk Wl B "Bt Thadl Sl TRl aal Dt - a "
SRR LA e A S LAl &L b A et el A et s Al et et A oA Ui A e A AL A R e COAGEAL AL L G AL i S A A A T T

4

P

.ﬂ S

LY 1>

20

e C 06,
.

All wvertices v perform a convergecast 1o inform the leader whether any bridges were
discovered. For the convergecast. each veriex sends one of two types of messages. A vertex v e
sends a BRIDGES (v) message if either v or some ST-descendant of v discovered a bridge. Other-

wise, v sends a NOBRIDGES (v . atlevel) message. where the boolean atlevel is used to inform the

VRS- A M N L.
_-n‘ v

leader whether the algorithm should halt. If v or some ST-descendant of v 1s at level i, then

\‘,T

v atlevel = true.

!.’.

2, -
d . . . -

v We describe the convergecast and the computation of atlevel for vertex v. After v has -

received a BRIDGES or NOBRIDGES message from each of its ST-children and counter (v)=0. v

sends a BRIDGES or NOBRIDGES message as follows. If v received a BRIDGES message from some
ST-child of v or if v discovered a bridge. then v sends a BRIDGES (v) message to stparent (v). 5
herwise. v sends a NOBRIDGES (v . arlevel) message to stparent (v). The value of atlevel is set
as follows. If level (v) =i orif v recetved a NOBRIDGES message with atlevel = true from some

ST-child of v . then v sets atlevel = true. (Otherwise. v sets atlevel ;= false. :

The convergecast of the BRIDGES and NOBRIDGES messages synchronizes the end of the
search for bridges at the current search level. When I has received replies from all of its 8ST- o
children. I. knows whether there were anv vertices at the current search level and whether any -

bridges were discovered.

It L. received a BRIDGES message. then the algorithm searches for augmenting paths contain- '_";
ing the bridges found at level i . We describe how the algorithm finds augmenting paths in Section
3.6, If an augmenting path v found. then /I begins a new phase by incrementing the phase -

p =p + 1 and broadcastuing a STARTPHASE (p) message. If no augmenting paths are found. then

L continues the search tor bridges by incrementing the search level i =i + 1 and broadcasting a

STARTBFS (i) message.

1‘
.
It 1. did not receive a BRIDGES message. but did receive a NOBRIDGE message with atlevel = - i
,

true. then /. increments the search level und continues the breadth irst search.

-’ Pl S . P S o S S S ST S e L T ST ST U DR
‘e ‘e _Ya e _~ - S % Y ‘e % e N NN * e s e t. % e
P S A RIS S I S P S A I T T I S T T NP

1

.

Y .C"!

%)

T

)

AP B LY

R i
'u'\'i. RIS

foo

£ S

-
<
,

el

\‘-

DA RTNENRY
\

i l('.

-
“
-
N
K,

LYY

Nt e N o i

21

H L receives only NOBRIDGES messages with atlevel = false, and level (L) < i. then the

algorithm halts since there are no vertices at level (.

Note that when an anomaly v sends a BRIDGESEARCH message 10 a vertex u . there is the
possibility that the BRIDGESEARCH message from v arrives at v after v has already sent s
BRIDGES or NOBRIDGES message. This occurs if v receives replies from all of its ST-children
before

the BRIDGESEARCH message from v arrives. But since sends

u a

BRIDGEREPLY (u . nobridges) message to «. the BRIDGES or NOBRIDGES message u sends 1o
stparent (u) is the same message ¥ would have sent if « had not received a BRIDGESEARCH mes-
sage from v. Note that v does not send a BRIDGESEARCH message 10 v since from «'s point of

view. the edge (u . v) is not along an alternating path.

Although v may receive a BRIDGESEARCH message from v after v has sent v s BRIDGES or
NOBRIDGES message. the algorithm remains synchronized. Since the leader cannot continue on Lo
the next step of the algorithm until all vertices have convergecasted a BRIDGES or NOBRIDGES

message. v convergecasts a BRIDGES or NOBRIDGES message only after v receives a BRIDGERE-

PLY message from u .

Now we give an example of searching for bridges. Suppose the algorithm is searching for
bridges in the part of the network shown in Figure 5. When L broadcasts a STARTBFS (0) mes-
sage. the exposed vertices C. F. and K begin breadth first search. C sends a BRIDGESEARCH (C. 1)
message 10 B, F sends BRIDGESEARCH (F. 1) messages to F and H. and K sends a BRIDGESEARCH
(K. 1) message 1o J. After the search for bridges at level 1 has been completed. the vertices have
the (evenlevel, oddlevel) values shown. When L broadcasts a STARTBFS (2) message. A sends a
BRIDGESEARCH (A, 3) message 10 D and D sends a BRIDGESEARCH (D. 3) message to A. A and
D determine that the edge (A. D) is a bridge. G and I find that the edge (G. 1) is a bridge. Thus A.
DD, G. and I convergecast BRIDGES messages and the leader knows that a bridge has been discovered

at search fevel 2.

.......

3 AR AN DRSS LR
(Y L) A

NS et e T e T Tt T At
A T e AN
»

..
-

e e

P LY I Sl T S S L R S S R e P AP U}
o .-.r' LN O e ST i AT
.

VT TR N AR IR T N A P AT N L FA TR "N AR F

(ML

22

s
SNt

-

g

B
00,1 .
‘N

Figure 5. Search for Bridges

Y |

TS AR S S OV R AN T
sl

PLAAPLISS
Ay

{

.-'. ¢

3.6 Finding Augmenting Paths !
.

We give an overview of the process of finding augmenting paths. If any bridges are b

L)

discovered at the current search level. then the algorithm attempts to find augmenting paths con-
taining those bridges. The algorithm searches for augmenting paths one at a time. This ensures

that the augmenting paths discovered are disjoint.

To search for augmenting paths one at a time, we consider the vertices of the network in
depth first search order on the spanning tree. For our discussion, assume that we order the ST- N
children of each vertex from left to right with respect to the root of the spanning tree. This
simplifies the description of finding augmenting paths. In an actual implementation. the ST-

children may be ordered by their identities. -

For each bridge discovered at the current search level, the algorithm performs depth first
search from the bridge vertices to find alternating paths 1o exposed vertices. We describe how to

find an alternating path from a bridge vertex to an exposed vertex in Section 3.7. If the algorithm

»
s

'y

we S5
LIRS T AVONPRRIN PR 8 8 |

1

¥

RTCLEPET R RPN N T SRR S SR o Yy
3) N I A R O ¢ L R L ARy N RSP O & Oy

L ol hf RPNl sl pop g | i

-'..

-

1 n--zu.”.f;

E

it

-~
o«

POV
s LA

,.
L
s

23

is able to find two disjoint alternating paths to exposed vertices. then the algorithm finds an aug-
menting path formed by the two alternating paths and the bridge. The algorithm increases the
matching along the augmenting path and erases the vertices path. Since erased vertices are not con-
sidered during the search for alternating paths to exposed vertices. erasing the vertices of an aug-

menting path ensures the disjointness of subsequent augmenting paths.

Before we describe the execution of the algorithm. we give a definition. If v is a vertex of a

bridge (v, w). then v owns the bridge (v . w). Thus each bridge is owned by two vertices.

The algorithm considers the vertices of the network in depth first search order from left to
right. To begin the process of finding augmenting paths. L sends a STARTAUGMENT message to
L s leftmost ST-child. A vertex u receiving a STARTAUGMENT message forwards the message to
u's leftmost ST-child. if one exists. The STARTAUGMENT message is forwarded until it reaches a

vertex {,, that has no ST-children. 1.e.. a leaf

When [, receives the STARTAUGMENT message and finds that it has no ST-children. {,,

Knows the algorithm s trying to find an augmenting path containing a bridge owned by [,,.

H L, is erased. then [, sends a NOTAUGMENTED message to stparent ({,,). If {,, is not erased.
then [, checks bridges ({,,) for the bridges that it found. If [,, did not find any bridges. then [,
sends a NOTAUGMENTED message to stparent ({,,)). If {,, found at least one bridge. then [,, arbi-
trarily chooses a bridge formed with a vertex r,, in bridges ({,,). Vertex r, 1s the buddy of {,. and
vice versa. Then [, tries 1o find an alternating path to an exposed vertex. We describe how a

bridge vertex searches for an alternating path to an exposed vertex in Section 3.7

If £, is unable to find an alternating path to an exposed vertex. then there 1s no augmenting
path containing [,,. Vertex [,, should not be further considered when searching for other augment-

ing paths during the current phase. Thus [, sets erased (/,,) = true. Then (. sends a NOTAUG-

MENTED message to stparent (/.,)

It 1. s uble to find an alternating path 22 "o an exposed verten. then [, sienals r o to search 1or

an exposed vertex by sending .. a GO (7|} messaye.

P P T P T P e T R W VT v B T T VAV STSTRT T ATR TR TR TR TATS T T TN TR TR R AT A S B

C

,.*'- \(' '- \ %J\‘:&"‘n‘\‘\’”‘ ”

24

For now we will assume that /,, and r,, do not encounter any common vertices when searching
for alternating paths leading to exposed vertices. If the search for an alternating path encounters
an erased vertex, then the search must backtrack and try to find a different path. All vertices are

“unerased” at the start of each phase. We consider common vertices and backtracking in Section

38.

When r,, receives the GO ([,) message. r, knows that [, is its buddy and that !, found an

alternating path to an exposed vertex. Vertex r, then performs depth first search to find an

exposed vertex.

If r, is able 10 find an alternating path P, to an exposed vertex disjoint from P, then there is
an augmenting path P, {l.. r,). P.. Thus r, sends a SUCCESS message 1o [, After !, and r
increase the maiching along the augmenting path. [, sends an AUGMENTED message to

stparent ({,). We explain how the bridge vertices increase the matching along an augmenting path

in Section 3.9.

It r, is unable to find an alternating path to an exposed vertex. then there is no augmenting
path containing r. Thus r, sets erased (r,) = true and sends an ERASED message to [, When {,,
receives the CLRASED message. [, deletes r,, from bridges ({,,). Then [, selects some other vertex r,
from bridges ({,) and sends a GO (,)) message to r;. Vertex [, continues selecting buddies from
bridges ({,,) until either some buddy is successful or all of them fail. If some buddy of ¢, is suc-
cessful. then there is an augmenting path. If all buddies of [, [ail. then [, sels erased ({,,) := true

and sends a NOTAUGMENTED message to stparent ({,,).

We have described the process of finding an augmenting path for /,,. Now we describe the

process for a general vertex x.

If x receives a STARTAUGMENT message. then x forwards the STARTAUGMENT message

to its lettmost ST-child. if one exists. If x receives an AUGMENTED or NOTAUGMENTED mes-

sage trom a ST-child of x . then x sends a STARTAUGMENT message to v s next ST-child from

the lett. 1f one exists. After & has sent a STARTAUGMENT message and received an

J‘J‘

i)

4B

‘.

e

O |

| SIS

d

v Ly
e %t

Wt
)“}.ﬂ

*

% |

.
L3

0

¢« v »

Ay o

l'{»

TVIFENE O v AT LAY s T R AT R INAAGINR LRI LS AN NN R TIRTRCTIRLT R W TR YA
' ﬁ 25
A

-

“a AUGMENTED or NOTAUGMENTED reply from each of x 's ST-children, if x is not erased and x

q found bridges. then x tries to find an alternating path to an exposed vertex. If x is able 1o find one.

then x sends a GO (x) message to the buddies of x in bridges (x) one at a time until either some

i e e e
a4
Can

buddy returns a SUCCESS message or all of them return ERASED messages.

- If x receives a SUCCESS message. then x and x 's buddy increase the matching along the aug-
> menting path. If x was unable to find an augmenting path. then x sets erased (x) := true.
£ _:.,_" Then x sends an AUGMENTED or NOTAUGMENTED message 1o its ST-parent as follows. If
either x or some ST-descendant of x found an augmenting path. then x sends an AUGMENTED
E 2 message. Otherwise x sends a NOTAUGMENTED message. Thus if x found an augmenting path
< u or some ST-child of x returned an AUGMENTED message. then x sends an AUGMENTED message
to stparent (x). Otherwise, x sends a NOTAUGMENTED message to stparent {(x).
s
: .t Observe that during each phase x can belong to at most one augmenting path. Thus. once the
- . algorithm finds an augmenting path containing x . x is erased and the bridges owned by x need not
be considered.
The sending of the AUGMENTED and NOTAUGMENTED messages forms a convergecast that
n synchronizes the end of the search for augmenting paths containing the bridges found at the current
: - search level. The convergecast also informs the leader whether there was an augmentation. If L
.; _-; receives an AUGMENTED message. then an augmentation occurred. Thus L increments the phase
’ r‘j p =p +1 and begins a new phase by broadcasting a STARTPHASE (p) message. If L receives
,«. only NOTAUGMENTED messages. then no augmentations occurred. In that case . increments the
" ™ search level i =i + 1 and continues the search for bridges at the next level by broadcasting a
. g STARTBFS (¢) message.
N
D We point out two modifications that could be made to reduce the number of messages. These
' modifications. however. do not reduce the overal]l message complexity of the algorithm.
i
- é One way 10 reduce the number of messages ix 10 send STARTAUGMENT messages only to
':: ;::', those vertices that sent BRIDGES messages. Vertices that sent NOBRIDGES messages and their ST-

." m

26

descendants do not need 1o be sent STARTAUGMENT messages since they did not find any bridges.

We also note that L does not need to initiate a search for an alternating path, i.e.. L searches
for an alternating path only if L receives a GO message. If there was an augmenting path contain-
ing [. then L is erased. If L is not erased. then there is no augmenting path containing L . This is
because each buddy of L must have been either ¢ontained in an augmenting or unable to find an
alternating path to an exposed vertex, and thus erased. Otherwise some buddy of L would have

sent a GO message to L.

3.7 Alternating Depth First Search

In the sequential algorithm of Micali and Vazirani. the bridge vertices [, and r, of a bridge

(l4. r,) perform depth first search concurrently to find alternating paths to exposed vertices. The

N.l., l‘. '

concurrent depth first search proceeds in lock step. where the depth first search for [,, proceeds to

the next level only if its level is greater than or equal to the level of the depth first search for r.

Al

A straightforward implementation of the concurrent depth first search in the distributed algo-

a
.
ety

rithm would be to have [, and r, synchronize across the bridge after each step of the depth first !
search. The synchronization after each step. however, is very inefficient because it introduces a)

large number of messages.

, N
We reduce the number of messages by using our implementation which we call alternating Na
-

depth first search. The difference between alternating depth first search and concurrent depth first

™

search is that in the alternating depth first search. the algorithm first finds an alternating path from g
one bridge vertex. say (... to an exposed vertex and then tries to find a disjoint alternating path "_'.: |
from r, to an exposed vertex. - ‘

We define a complete alternating path to be an alternating path from a bridge veriex Lo an :_::

exposed vertex. We define extending an aliernating path 10 be the process of increasing the length \-'

-

ol an alternating path. An alternating path mayv be extended until it is complete.

N
._,‘-,'l_,

.

A

27

We now describe how the bridge veruces [, and r,, find an augmenting path containing the
bridge (/...) using alternating depth first search. Vertex [, begins the depth first search by choos-
ing a predecessor x, from predecessors{{,). Vertex [, sets dfschild ({,):= x, and sends a

DFS ({,. r.) message 10 x, . A vertex receiving a DFS ({,,. r,,) message knows the depth first search

s forl, and r,1s{,’s buddyv '

When x, receives the DFS (/,, r,,) message. x, determines whether it can be added to the
alternating path. First x, checks erased (x,) to determine if it is erased. If x, is not erased. then
it checks visited (x,) to determine if it has been visited by some other bridge vertex. We consider
the following cases:

Case I: If x, is erased. then x, sends an ERASED message to {,,.
Case 2: If x, is not erased and has not heen visited. then x, can be added to the alternating path.

To add x, to the alternating path. x,, sets visited (x,) :={,,. the bridge vertex initiating the depth

first search. and dfsparent (x,) :={,. Then x, tries to extend the alternating path by sending a

DFS ({,. r o) message to a predecessor x,, _;.

This process is repeated n - 1 more times adding the vertices x,, ;. X, —3. - . X t0 the alter-
nating path until the depth first search reaches an exposed vertex x,. After x, is added 1o the
alternating path. x, knows that the alternating path is complete. Thus x,, sets altpath (x,,) := true

since x, is a vertex of a complete alternating path and sends a SUCCESS message 1o dfsparent (x,).

x). The SUCCESS message signals that the depth first search has found a complete aiternating

path.

When vertex x, receives the SUCCESS message. 1) knows that it 15 a vertex of a complete
alternating path. Thus x; sets altpath (x;):= true and sends a SUCCESS message 1o

dfsparent (x). This process is repeated until x, sends a SUCCESS message to /,,.

When [, receives the SUCCESS message. (., sets altpath (/,)) ;= true. \ertex !, then signals
buddy » ., to proceed with depth first search by sending a GO (/,,) message 1o .. Vertex ~,, then

performs depth first search and tries 1o find a4 complete alternating path. It duriny the depth first

- - e e
LS TN . RS I YR PR JAN
RN _\':\"..'_\ .\".;:\.*A ANTRRR RN LCAURAC A A

28

search a vertex x, with visited (x,) =/, receives a DFS (r,,. [,)) message. then x, knows that it s a
common vertex lound by Lhe depth first searches of [, and r,,. We discuss common vertices in Sec-
tion 3.8.

Case 3: lf x, is not erased but was visited by some other bridge vertex. then x, is a vertex of a
previcusly discovered complete alternating path and can be added to the current alternating path.
A previously discovered complete alternating path exists if when the algorithm was searching for
an augmenting path containing another bridge. the algorithm found only one complete alternating
path from the bridge. If both bridge vertices were able to find disjoint complete alternating paths.
then there would be an augmenting path and x, would be erased. If there was no alternating path
from x, 1o an exposed vertex. then again x, would have been erased. Thus x, must be a vertex of
a previously discovered complete alternating path. However. the alternating path containing x,
may no longer be complete because another augmenting path may have subsequently passed

through it. Thus some of the vertices may be erased.

To add x, 1o the alternating path. x, sets visited (v,) =/, and dfsparent (x,):=1, \Vertex
x, sets altpath (x,) := false because x, does not know whether the alternating path to the exposed
vertex is still complete. Then x, sends a DFS ({,.r,) message to dfschild (x,). vertex v, _,. the

child of x, in the previous alternating path.

If the previous alternating path x, . ¥, _;. .V, is sull complete. then the depth first search
reaches the exposed vertex v, using the minimum number of messages. The intermediate vertices
v, set visited (y,) := [, and altpath (v,) := false. When v, receives the DFS (£,) message. v..
sets visited (v,,) :=[,,, altpath (y,,) := true, and sends a SUCCESS message to disparent (v.,). Inter-
mediate vertices v, receiving a SUCCESS message set altpath (v,):= true and forward a SUCCESS
message to dfsparent (v,). When x, receives a SUCCISS message from v, ;. x, sels altpath (x,)
= true and sends a SUCCESS message 10 (..

It the search along the previousiy complete alternating path finds . verten that s erased. then

the depth fhirst search sends a DES (70 7) message 1o some other predecessor and the depth fiest

. o -,
,-\. AT P LI RIS SRR E K

BL

'.l (l ¢
.

) Bk

N |

| AL

h i
F R R

“l
oo

AN

»

R AN

." .h .'|. (.,-’ -l. A/ .I. ...

a0
.

.

-,

-,
-

]

":/ g

A /X4

P L T
NN NN NN ‘:‘—'.‘—'AL An. L’ 'if‘- *“LALJ' “‘AW

)

A

€A

.,

AR

P

-'\‘n’\'v'il_.d',.'a‘ '..-n"_‘q"-‘__("‘-'

search proceeds as if the previously discovered complete alternating path did not exist.

We have described the depth first search for x,. We now digress briefly and describe the

depth first search for a general vertex w,. Suppose w, receives a DFS (a . b) message from w, ..

If w, is erased. then w, sends an FRASED message Lo w,,,. 1 w, can be added 1o the alternat-

ing path, w, sets dfsparent (w,) :=w,,, and visited (w,) '=a.

If w, is exposed. then w, sets altpath(w,):= true and sends a SUCCESS message to
dfsparent (w,). Otherwise. w, tries 10 extend the alternating path. If w, is a vertex of a previ-
ously discovered complete alternating path. then w, sends a DFS (a. b) message to dfschild (w,).
If w, has not been visited. then w, selects a predecessor w,_, from predecessors (w,). sets

dfschild {w,) := w,_,. and sends a DFS (a . b) message to w, _,.

If w, receives an ERASED mecsage from dfschild (w,). then w, deletes dfschild (w,) from
predecessors (w,) and sends a DFS (a, b) message 1o some other predecessor of w, . If w, receives a
SUCCESS message from some predecessor of w, . then w, sets altpath (w;) := true and sends a SUC-
CESS message to dfsparent (w,). If all predecessors of w, return ERASED messages. then w, sets

erased (w,) := true and sends an ERASED message to dfsparent (w,).

We now return to the alternating depth first search with the bridge vertices [, and r,. Vertex
{, sends DFS {{,,.r,) messages to its predecessors one a time until some predecessor of {, returns a

SUCCESS message or all predecessors of [, return ERASED messages.

If all of {,/’s predecessors return ERASED messages. then there is no augmenting path contain-

ing [,,. Thus [, sets erased ({,) := true and sends a NOTAUGMENTED message to stparent (7,,).

If vertex [, receives a SUCCESS message. then there is an alternating path from [/, to an

exposed vertex. Vertex [, then sends a GO ({,,) message to r .

If r, is erased. then r,, sends an FRASED message 10 /.. Otherwise. r, tries to find an alter-

nating path to an exposed vertex. The Jdepth first search tor » ., 1s the same as for /..

ce e e e s e, e <
S .‘-:..f'._(\. TRy Al Tty Tl Ll

.....

"

T N L P . A .
.Mm A_A‘l':fﬁ)‘(:‘!'rf.\j :. l'_\ q'.--":‘ n‘.\ AN ;') AR AR S

N e
Sale Al LAty

30

If », finds a complete alternating path, then r, sends a SUCCESS message to [,. AFterl,and
r. increase the matching along the augmenting path. [, sends an AUGMENTED message to

stparent ({,).

If r, is unable to find an alternating path to an exposed vertex. then there is no augmenting

path containing r,,. Vertex r, sets erased (r,) = true and sends an ERASED message to [.

If 1, receives an ERASED message from r,. then [, deletes r, from bridges ({,,) and selects
some other buddy r from bridges ({,). If all buddies of [, return ERASED messages. then there is

no augmenting path containing {,. In that case, [, sets erased ({,) := true and sends a NOTAUG-

MENTED message to stparent ({,,).

We give a short example for finding an augmenting path. In Figure 6, suppose we are search-
ing for an augmenting path containing the bridge (A. D) and A is ready to begin alternating depth
first search. A sends a DFS (A. D) message to B. and then B sends a DFS (A. D) message to C. Since

C is exposed. C sends a SUCCESS message to B. and then B sends a SUCCESS message to A. Then A

Figure 6. Finding an Augmenting Path

1/

» ."t" "

=8

-
AN

s,

A

[
2

bARE

D

".:«_ l.' .

- n"')

AN

5

. .I ‘J'

S |

AL L AN AR At S iy oo et "t U A N Nkt R PRI N}

Ry .:‘\:’ ’o

31

sends a GO (A) message to D. D sends a DFS (D. A) message to E and then E sends a DFS (D. A)
message 10 F. Since F is exposed. F sends a SUCCESS message to E. When D receives a SUCCESS
message from E. D sends a SUCCESS message to A. Thus A and D find an augmenting path. As A
and D increase the matching along the augmenting path (C. B. A, D, E, F), vertices A. B, C. D. E,
and F are erased. Thus when G tries to find an augmenting path for the bridge (G, D) and sends a

GO (G) message to D. D sends an ERASED message to G.

3.8 Common Vertices and Backtracking

A common vertex is a vertex discovered by both vertices of a bridge during alternating depth
first search. Suppose that we are trying to find an augmenting path containing the bridge (/. r) and
that [finds an alternating path to an exposed vertex. If the depth first search for r encounters a
vertex ¢ with visited (c) =[. then ¢ is a common vertex of [and r. The deepest common vertex

(DCV) is the common vertex with the smallest level found so far by both ! and r during alternat-

ing depth first search.

We define backiracking 1o be the process of the depth first search trying to find a different
alternating path to an exposed vertex. To avoid redundant backtracking over edges that have
already been searched. ecch vertex v maintains a variable barrier (v) used to keep track of how far

Lthe search has progressed. Backtracking is not allowed to back up beyond a vertex that has already

been searched.

We now describe the alternating depth first search with common vertices. Figure 7 illustrates

the relationship between the vertices in our discussion of the alternating depth first search. The

dashed lines represent omitted vertices.

After ! finds a complete alternating path. [sets barrier () := [since the depth first search for

[should not backtrack bevond [. Vertex { sets barrier () only if { finds a complete alternating

path. Otherwise. [would be erased. Then [sends a GO (/) message 1o . When r receives the

(i) (1) message. r sets barrier (») := r and begins depth first search.

. '-"';(-."'..’_-"\"'y'\ sl "'V‘"’ e :’_\" 7

LR R - N e LT e
~ w"" ‘\.'\"' i -.' NN At \ \"\."" AT T

o s 0 .
o .

I I ANRNA .

Pk RSP

P

I

LT

oo
* -K.\\ fsf.{s\{h\'.‘fd\ sfs s a{a‘(\\ AN 'f.a.\:-n.f .‘Ls'x A o .x.)h. o e

32

dy

Figure 7. Illustration for Alternating Depth First Search

A vertex c¢ realizes it is a common vertex of { and r if ¢ receives a DFS (r . !) message and

visited (¢) = /. Since ! was the first bridge vertex to find ¢ . the depth first search for r backtracks

first. Suppose the DFS {r . [) message sent to ¢ came from vertex &,,. Then ¢ causes the depth first -

search for r to backtrack by sending a BACKTRACK (¢ . r) message 10 b,,.

When &, receives the BACKTRACK (c.r) messag> from c. b, knows that ¢ is the next ver-
tex on the path from b, to the DCV and sets dcvchild (6,) :=¢c. Vertex &, tries to find another

alternating path by sending a DFS (r . !) message to some predecessor d ,, of b, if one exists.

If there is an alternating path to an exposed vertex through d., disjoint trom the sne tound hy

{ . then there 1s an augmenting path.

‘..'-‘-'\\ '_ -

N <

SCASOALE 3/ i e B on s a b At Nt b R A S Tk e S T IR E RIS T AT A

YR SO

'n';\ i.‘n.‘h’; ROUYY \

NP

(SN

e Tu T PR

KT CR
TR, P

oS
oA A

P
o
L R
s)n’ P

AL
Al bbb

e
rr
s D

\-

lr'r
2

RN

-

PN

4

Wy T

LB i ol

-

-y
[

3

s

[3

‘

1 o3

N

N v

LTS
LNy

*-",

R

>

< 'I:'I

5
» RENS

ANLY, LA T LA Y N\ e d L8 e" LML PP e it TR Aar 00" Bes o Sas ta))

33

If d., is unable to find a complete alternating path, then d 1s erased and sends an ERASED
message to b,. If all other predecessors of b, return ERASED messages. then b, sends a
BACKTRACK (c.r) message to dfsparent (b,). Vertex b, is not erased since it has an alternating

path to an exposed vertex through the DCV.

This process continues up the alternating path of the depth first search for r until either a

vertex of the alternating path finds a complete alternating path and thus an augmenting path, or r

receives a BACKTRACK (c . r) message.

If r receives a BACKTRACK (c.r) message and is able to find a complete alternating path
through another predecessor. then there is an augmenting path. Otherwise, since barrier (r) =r . r
does not backtrack any further. Vertex r must then claim the DCV and force [to backtrack. In
addition, by claiming the DCV, r indirectly claims the alternating path leading from the DCV to

the exposed vertex via the dfschild variables.

To claim the DCV. r sends a TAKINGDCYV (r) message to [to inform { that r is claiming
the DCV. When [receives the TAKINGDCV (r) message. [knows that it can receive BACK-
TRACK and SUCCESS messages from its predecessors as a result of backtracking. Then r sends a
CLAIMDCYV (r. ¢) message which is forwarded along the alternating path via the dcvchild vari-
ables until it reaches ¢. When ¢ receives the CLAIMDCV (r. ¢) message from b,. ¢ sets
visited (¢) = r and barrier (¢) :=r since the depth first search by r should not backtrack bevond

c. Vertex ¢ sends a BACKTRACK (c.l) message to dfsparent (¢). vertex &,. and then sets

dfsparent (¢) := b,

After receiving the BACKTRACK (c.!) message. b sends a DFS(l.r) message to some
predecessor d |, if one exists. The process for d, is the same as for d. The backtracking process
repeats up the alternating path of the depth first search for ! until either some vertex of the alter-

nating path finds a complete alternating path. or { receives a BACKTRACK (c ./) message.

If some vertex of the alternating path is able to reach an exposed vertex. then ! recerves

SUCCESS message. After [receives the SUCCESS message. 7 hnows that backhtracking was

e e e et e e e e et LN N e S
AP e J_.‘.l_c', L T N A S R AU Pt ST e e

P
- -

LA

> S S e W E

[A R A]

PN 4

Lo AN

[T AN

a8 e,

34

successful and that there is an augmenting path.

If none of {'s other predecessors is able 1o find another alternating path to an exposed vertex,
then [must claim the DCV and force the depth first search for to backtrack. Thus [sends a

CLAIMDCYV (1. ¢) message to devchild (7).

0y ARG Y

]

The intermediate vertices forward the CLAIMDCV (I. ¢) message until it reachesc. When ¢

'

receives the CLAIMDCV (I, ¢) message. ¢ realizes that [is forcing r 1o backtrack. But since bar-

, NS

rier (¢) := r . the depth first search for r cannot backtrack beyond ¢. Thus ¢ knows that there is
no augmenting path containing the bridge (I, r). In fact. the alternating depth first search from [

and r has discovered a blossom with base c. We discuss blossoms in Section 3.10.

While backtracking, it is possible that the depth first search for { may find another common
veriex c¢; at a level lower than the level of the DCV claimed by r. This situation is recognized by
¢y if ¢ receives a DFS (I, r) message and visited (c¢,;) =1. This is because the only way [could
visit ¢ again is if the depth first search of { was forced to backtrack and found another alternating

path to ¢;. Thus ¢, forces the depth first search for [to backtrack.

If [is unable to find a different aliernating path to an exposed vertex. then [sends a

»
CLAIMDCV (L. ¢,) message to claim ¢,. Vertex [does not need to send a TAKINGDCV' message o
to r since r already knows there is a common vertex. When ¢, receives the CLAIMDCV ({. ¢) iz
message, ¢, sets barrier (¢,) :=! and forces the depth first search for r to backtrack. -

If the depth first search for r cannot find another complete alternating path, then the depth ':

first search for r will hacktrack to ¢. Since barrier {c) = r, the depth first search for r does not "

8

backtrack further. Vertex ¢ must claim ¢ . Thus ¢ sends a CLAIMDCYV (r . ¢ ;) message which 1* -
forwarded to ¢ ;. When ¢ receives the CLAIMDCV (r . ¢) message and finds barrier (¢ ;) =1, ¢, 4- |
knows there is a blossom with base ¢ ;. The original exposed vertex found by { may be alternatelyv o

o
claimed bv [and r several times. ! j
We now give an example 1o demonstrate aiternating depth first search with commoen ertices. } ‘
Suppose we have the graph shown in Figure d and the algorithm s searching lor an auymenting 3 ‘
.

Ty

NS

Al

35

path from the bridge (A, B).

Suppose A goes first and finds the complete alternating path (A, D, F. H. J. K. M. P). Thus

vertices A, D. F, H. J. K, M, and P all have their visited variables set 1o A. Vertex A sets barrier

(A) := A and sends a GO (A) message 1o B signaling B to proceed.
Figure 8. Commen Vertices and Backtracking
R N NN L N T =

ML Ll

.

LI
at 9.2 2

L O W W Ve T

36

When B receives the GO message. B sets barrier (B) := B. B sends a DFS (B, A) message to D.
D discovers that it is a common vertex of A and B since D has already been visited by A. Thus D

sends a BACKTRACK (B. D) message to B. When B receives the BACKTRACK (B. D) message

o,
from D. B sets dcvchild (B) := D. since D is the next vertex along the path leading to the DCV. 0
Since B has no other predecessors. B must claim the DCV D. Thus B sends a TAKINGDCV (B) mes- ~
sage 10 A notifying A that B is claiming the DCV. Then B sends a CLAIMDCV (B, D) message to D
to claim the DCV. ;3‘

2

When D receives the CLAIMDCV (B, D) message. D sets barrier (D) := B, and visited (D) := B.

After D sends a BACKTRACK (A, D) message to A, D sets dfsparent (D) := B. t

When A receives the BACKTRACK (A, D) message. A sets dcvchild (A) := D and sends a DFS
(A. B) message to predecessor C. The depth first search for A progresses to vertices E. G, and I.
When K receives a DFS (A, B) message from I. K knows it is a common vertex since K has already

been visited by A. -

K sends a BACKTRACK (A, K) message to I. I sets dcvchild (I) := K and sends a BACK-
TRACK (A, K) message to G since [does not have any other predecessors. Eventually A receives a

BACKTRACK (A. K) message from C. Since A has no other predecessors. A sends a CLAIMDCV

»

(A. K) message to K which is forwarded by the intermediate vertices using their dcvchild variables \‘-

until it reaches K. A does not send a TAKINGDCV message to B since B already knows there is a .:;

common vertex. h
When K receives the CLAIMDCV (A, K) message, K sets visited (K) := A and barrier (K) :=

A. After K sends a BACKTRACK (B. K) message to J. K sets dfsparent (K) := 1. N

v

When J receives the BACKTRACK (B, K) message. J sets dcvchild (J) := K. and sends a DFS
(B. A) message to predecessor L. The depth first search for B progresses to N. When P receives a =
DFS (B. A) message from N. P knows that it is a common vertex because it has alreadyv been visited
by A. Thus P sends a BACKTRACK (B. P) message message to N. The depth first search back-

tracks unul it reaches 1. Since barrier (D) = B. turther backtracking tor B is prehibited. Since

1} L&
e AEEER L . at TATERE S P L € L IR

SRCTERCI TR NN St et T v RARERRG
AP S O bt N g ol TN .Af .(.KL-’ JML(L ._'(' S Tt Lot

37

there are no other predecessors of D. D sends a CLAIMDCV (B. P) message to P. When P receives
the CLAIMDCV (B. P) message. P sets visited (P) := B and barrier (P) := B. After P sends a BACK-

TRACK (A. P) message to M. P sets dfsparent (P) := \.

When M receives the BACKTRACK (A, P) message from P. M sets dcvchild (M) := P and
sends a DFS (A, B) message to predecessor O. Since O is exposed. O sends a SUCCESS message to M
which 1s eventually forwarded to A. When A receives the SUCCESS message. A knows there 1s an

augmenting path.

If vertex O did not exist. then K would have received a BACKTRACK (A. P) message. Since
K has barrier (K) = A, K sends a CLAIMDCV (A. P) message to M. which is forwarded to P. When

P receives the CLAIMDCV (A,) message and finds barrier (P) = B. then P knows there is a blos-

som with base P.

3.9 Increasing the Matching

If an augmenting path is discovered. the algorithm oblains a new matching of greater cardi-
nality by reversing the matching of the edges of the augmenting path. Since the number of free

edges in an augmenting path is one more than the number of matcned edges. the cardinality of the

new matching increases by 1.

Suppose the bridge vertices of a bridge (. r) have found disjoint alternating paths to exposed
vertices. We describe how ! and r reverse the matching of the edges of the augmenting path.

After [receives a SUCCESS message from r. [sends a STARTINVIFRT message to
dfschild (Z) that is forwarded along the alternating path unul it reaches the exposed vertex ..

Intermediate vertices x, forward the STARTINVERT message to dfschild (x,). When =, receives

the STARTINVERT message. =, knows that it is a vertex of an augmenting path. Thus z; sets
erased (= ! = true. Then - must reverse the matching of its edge 1in the augmenting path. Since =
15 exposed. the edge between = and disparent (2) s free. To reverse the matching of the edge. =
sels mate (2 ! = disparent (2 . Then 2 <ends un FNDINVERT message to disparent ().

o”

B

\"_’ .‘\)-_._.\'

AN

po Jab i S it - b St it fia gt liat ol 3 IPIE e JUC RN GRS SN L R

38

An intermediate vertex x, receiving an ENDINVERT message from dfschild (x,) sets
erased (x,) := true. To reverse the matching of its edges in the augmenting path, if x, is currently

matched with its DFS-child. then x; matches itself with its DFS-parent. and vice versa. Thus if

e
Ny

E
E‘:
2
‘5
s

mate (x,) = dfschild (x,). then x; sets mate (x;) := dfsparent (x,). If mate (x;) = dfsparent (x;).

then x, sets mate (x,) := dfschild (x;). Then x, sends an ENDINVERT message to dfsparent (x;).

When ! receives an ENDINVERT message. ! sets erased (/) := true. Then [reverses the
matching of its edges. If mate (I)=r, then [sets mate ({):= dfschild ({), and if mate ([)=

dfschild (I). then ! sets mate ({) :=r.

The process of increasing the matching for along its complete alternating path is the same.

After r receives an ENDINVERT message and sets erased (r) and mate (r). r sends an ENDIN-

VERT message to {. After [has set erased (!) and mate (), [sends an AUGMENTED message to o

stparent ().

3.10 Blossoms

Now we consider general graphs with blossoms. We start by describing blossoms. We use the

description of Peterson (1985). A blossom exists if there is a bridge (s . ¢) and vertices a such that]
b
o2
. o

a is an ancestor of both s and ¢ . and no ancestors of s and ¢ other than a have level equal to level
s
(a). Among the set of vertices a. let b be the vertex whose level is maximum. Then the blossom :.4
-

B is the set of vertices d such that:

N R T AR PR S ey R T e T ity
RIS AT DA A IR IERERE AN A AT AL AP AL S G S DG I P

(1) d does not belong to any other blossom when B is formed. “
(2) b is an ancestor of 4 . and KX
W
(3)eitherd =3 ord =¢ ord isan ancestor of s orof ¢. =
T
Vertex & is the base of blossom B. Figure 9a is a graph with the blossom (C, D. E. F. G) with base o
\l
C. An embedded blossom is a blossom whose base belongs to another blossom. A blossom may be
A
embedded tn more than one blossom. !
N,
|
~
P P NN IR R . :::;;:.\;‘...-\. A‘--..‘_-:\- DA rJ ~-_-- _-‘-_-_.“ . _..:. ‘.-‘ ..\"

AT I, WA IR S SRS IR

JOR SR

By = o,

e A A,

‘g b'n 80 8is Ala Con At A" : TR LY WL UR AT U O A L T TR L b A0 s AL < A

39

:
:

G °.-...............-..

(a) (b)

Figure 9. Shrinking a Blossom

Next we describe a method of handling blossoms used by several sequential algorithms.
Edmonds (1965) presented the idea of shrinking blossoms by replacing each blossom with a single
"supervertex”. Figure 9b shows the result of replacing the blossom (C. D. L. F. G) in Figure 9a by
the supervertex M. Edmonds proved the following theorem:

Theorem 3.1: Let G be a graph with a blossom. Let G be the graph obtained from G by shrink-

ing the blossom. Then there is an augmenting path in ; if and only if there is an augmenting path

tn (5 .

N PRI " ('4- 'a - '-f\i'\-'\ o

.r"d'

Yo W, e
!
. '

L phe B A ALl AL ALAL BL AL Al

40

Micali and Vazirani used this idea of shrinking blossoms to attain the O(I1E 1) time for each
phase of their sequential algorithm. In their algorithm, if the depth first search for an exposed ver-
tex encounters a vertex belonging to a blossom. the search "jumps” to the base of the blossom and
continues the search. By making this jump, their algorithm avoids repeated traversals of the edges
of the blossom. If the search finds an augmenting path, the blossom is opened to obtain the com-

plete augmenting path.

In a distributed system the notion of "jumping” does not apply. Since each vertex can only
communicate with its neighbors. each "jump” would require the vertices of the blossom to send a
message along the blossom until it reached the base. Thus shrinking blossoms would not

significantly reduce the number of messages.

We now describe the execution of our algorithm in graphs with blossoms. Since the steps of

the algorithm have been described in detail in the previous sections, we give a higher level descrip-

tion.

The main difference between searching for augmenting paths in graphs with blossoms and

graphs without blossoms is the presence of anomalies. In a graph where there are blossoms. the
edge between a vertex g and an anomaly f is a bridge. Thus the presence of anomalies may lead g
~

to the discovery of additional augmenting paths. In a graph without blossoms, the edge between g

and / is not a bridge.

We return to the execution of the algorithm in Section 3.8. The alternating depth first search

for an augmenting path containing bridge ({. r) discovers a common vertex c¢. [f ¢ receives a

N
CLAIMDCV (I. ¢) message from b, and barrier (c) = r. then ¢ knows there is a blossom with -
base ¢. To notify [and r that there is a blossom. ¢ sends a BLOS (/. ¢) message to &, which is
forwarded to ! and a BLOS (r . ¢) message which is forwarded to ». Vertices and r realize there v

is a blossom with base ¢ when thev receive the BLOS messages.

l.et B be the blossom with hase ¢ and let ¢ be the tenacity ({.r . Then for each vertex b in

B except the base c . the algorithm sets blossom (b)) := ¢ and the otherlevel of b 10 ¢ - level (b).

! 11. . .

. T et e T Yt et et e
RO AL A AT RENT NI AT R

3
3" 41

S R
NE We call this process labeling the blossom.

!

g ' We point out a special characteristic of vertices belonging to a blossom. Each vertex b belong-
é . ing 1o a blossom has two alternating paths to an exposed vertex. One path is the "direct” path and
‘§ "':‘ the other goes "around” the blossom. One path has even length and the other odd length. One path
'\ a begins with a free edge and the other begins with a matiched edge. Thus each vertex b of the blos-
i:' * som has an alternating path to an exposed vertex through both dfsparent (v) and dfschild (v).
W
:.t. g" except the bridge vertices which have the their buddy instead of dfsparent (v). Thus. for each ver-

oo tex b in the blossom, the algorithm sets altpath (4) := true.
RN

:’2 To label the blossom B.! and r compute ¢. Note that since level ({) = level (r). ! and r can
'S compute ¢ independently. We describe how ! labels the vertices 5 between! and c. Vertex ! sets
" . blossom () := ¢ and altpath ({) := true. Then ! sends a BLOSSOM (/.c.¢) message to
% .‘E: devcehild (1), a vertex b. Vertices b receiving a BLOSSOM (/. c .t) message that do not already
' i belong to a blossom set blossom (b) :=c. the otherlevel of b to ¢ - level (b). and altpath (b) :=
: true. Then b forwards the BLOSSOM ([.c .t) message to dcvchild (b).

.-
':'.'é \, The BLOSSOM (I, ¢, ¢t) message is forwarded until it reaches ¢. If a vertex d receiving a
Ta

BLOSSOM (. c.t) belongs to an embedded blossom. then d just forwards the BLOSSOM message

-

L

to devehid (d).

When ¢ receives the BLOSSOM (L. c .t) message from b;. ¢ sends a BLOSSOMREPLY ({)

oy
YA
rs

message to &;. Vertex ¢ already has altpath (¢) = true. The BLLOSSOMREPLY message is for-

x

- i~ warded via dfsparent to{.

9

J .

\1 'v:\ The process of labeling the blossom for r is the same. After r receives a
A2 A

o BLOSSOMREPLY (r) message. r sends a I.ABELED message to {. After [has received a
A

-..’ .l'
L BLOSSOMREPLY (/) message and a LABELED message from » . ! knows the blossom is labeled.
¥

:'.': b Figure 10 shows a blossom that has been labeled.

v., Since a blossom has been discovered. there is no augmenting path containing bridge ([, r).
Y,

;. :: Vertex [checks bridges (/) to determine if { tound anv other bridges. If not. then ! sends a

sl

R N L N R N SRV AT LT L WL
l\ - \.. - 'q. - .-'_.") A . “ " .

W » L

T N L R
‘\"\"\‘-\. o ...’.\l’\l\'\q 0% \J' "\n

-,,. ,
N

-
-
»

- e
A85535]

i,

OLNAX

-

. 0 A

ol

RO

'

ICL S 54 W HY

Figure 10. A Labeled Blossom

NOTAUGMENTED message to stparent (I). Note that [is not erased since [has a complete alter-

nating path.

If { found another bridge with a vertex 5. then ! sends a GO (I) message to s . If 5 is able to
find a disjoint alternating path to an exposed vertex. then there is an augmenting path. Then ! and

5 increase the matching along the augmenting path. and [sends an AUGMENTED message to

stparent ({).

If the depth tirst search for » finds a vertex & of the blossom B found by { and » . then since

altpath (b)) = true. the depth first search follows the complete alternating path 1o an exposed

,.
P A

vy

9

’r.""l

A

B A4
[Wy

‘8

e M Ay
‘@ o
[.\'- LR ™

- ... B S ANt » -l . PO - - -l A B B, - . - v LS -

43

vertex. Thus s receives a SUCCESS message and s sends a SUCCESS message 1o [. To determine
whether the aliernating path found by s has any common vertices with the complete alternating
path for [, veriex { searches its complete alternating path again. We accomplish this by modifying
the DFS message to signify that it is re-searching a path. If the paths are disjoint, then there is an
augmenting path. If there is a common vertex. then the alternating depth first search for! and s is
the same as in the case with common vertices. If s and ! find another blossom. then s and [label
the blossom with the base. Note that it is possible that the blossom found by ! and » has the same

base as the blossom found by ! and s. Then the vertices of both blossoms would have blossom ()

settoc.

If the depth first search to find an exposed vertex for some other bridge found at the current
search level or at a higher search level finds a vertex belonging to a blossom, then the search

proceeds in the same way as in the case of finding a previous complete alternating path.

When the algorithm has completed the search for augmenting paths at the current search
level. if the leader received an AUGMENTED message. then the leader begins a new phase, and the
discovery of blossoms at the current search level has no effect. If no augmenting paths were found,
then the leader continues the breadth first search by incrementing the search level { ;=i + 1 and

broadcasting a STARTBFS (i) message.

As the leader increases the search level, we want the breadth first search for bridges to wrap
around blossoms. If the search discovers a bridge such that both vertices of the bridge belong to
the same blossom B . then we ignore the bridge because a search for an augmenting path would lead
to the rediscovery of B. Thus. we modify the BRIDGESEARCH message to tell whether a vertex x

belongs to a blossom. If x belongs to a blossom, then the BRIDGESEARCH message includes the

base of this blossom.

To allow the search for bridges to wrap around blossoms, we modify the breadth first search

so that when the leader broadcasts a STARTBES (i) message. vertices v mayv send BRIDGESEARCH

messages tf either evenlevel (¢) =1{ or oddlevel (v) =:. Vertices v ~end BRIDGESEARCH mes-

sages 1o vertices a in anomalies(v) and those vertices u along alternating paths in

activeneighbors (v) - predecessors (v) to which v has not sent BRIDGESEARCH messages previ-

ously.

If v has an anomaly a . then the edge (v.a) is a bridge. and v convergecasts a BRIDGES mes-
sage. If v receives a BRIDGEREPLY (b . bridge) message from a vertex u . then the edge (v.b) is a
bridge. and v convergecasts a BRIDGES message. Otherwise, v convergecasts a NOBRIDGES mes-
sage. As the search level is increased. the breadth first search follows a path leading out of the

blossom. if one exists.

If a bridge is discovered. the search for augmenting paths is basically the same as before. The
only difference is that during the depth first search to find an alternating path to an exposed vertex,
the vertices in a blossom need 1o consider 1wo kinds of predecessors, those joined by a free edge and
those joined by a matched edge. Thus, if a vertex b belonging to blossom is searching for an
exposed vertex or backtracking, b needs to select a predecessor of the correct kind. But this is sim-
ple since & ‘knows the matching of the edge on which the last DFS or BACKTRACK message
arrived. Thus, if the last DFS message arrived on a matched edge. then b sends a DFS message 10 a
predecessor joined by a free edge. and vice versa. If the last BACKTRACK message arrived on a
free edge. then b selects another predecessor joined by a free edge since b tries to extend the alter-

nating path. Note that each vertex has at most one matched predecessor.

The process of increasing the matching along the augmenting path is the same as before. The

STARTINVERT and ENDINVERT messages are sent via the dfschild and dfsparent variables.

We give a brief example describing how the algorithm finds augmenting paths in graphs with
blossoms. Figure 11 is a graph with an embedded blossom. The current matching is the matching

shown.

The search for bridges begins from the exposed vertices A and T. When the search level s 4.
vertex () discovers anomaly P since P sends a BRIDGESEARCH message to (). Thus) knows the

edge (). P) is a bridge if O belongs to a blossom. However, at this ume. () does not know w hether

(4
ALY

RAY |

“

A 7S YY)

[N SN

.

b

a

Rh A

‘:

.
"
»

(e

_»

fa~fa¢a‘

Figure 11. An Embedded Blossom

it belongs to a blossom. Since there is no augmenting path, the search for bridges continues.

When the search level reaches 6. H and | discover the bridge (H. [). The search for an aug-
menting path trom H and | leads to the discovery of the blossom (L. F. G. . 1). Thus F. G H, and

I are lubeled with base 11, Since there is no augmenting path, the breadth first search continues. At

AV

.'-.- AL - ’--‘:', o ‘}.' St . ..- " . e a’. N
v WL SR PRI oSN O SR l-i-hi.hf.iJ.iL;.f.-L L‘._‘{‘Lt._ 2

{

R

RO AV TR }*)"'Ji")"."‘b-")7')"'.‘-“‘.“‘-"..‘"‘.-’TUTI'.K‘-ﬁ'."ﬂ'..‘f")".\-‘.ﬂ”'.“"ﬂ".ﬁ"}‘.F‘.K'.V"}\".‘—,")7)""-""}".7,')_')' A N

46 | |

search level 7, the bridge (J. K) is discovered. The search for an augmenting path leads to the)

discovery of the blossom (C. D, E. G. 1. J. K, L. M. N, O). The vertices of this blossom are labeled

with base C. except G and | which were already labeled with base E. Note that blossom (E) = C. N
Since there again is no augmenting path. the breadth first search continues and wraps around EE

the blossom. When the search level reaches 12. vertex O convergecasts a BRIDGES message since O -
has the anomaly P. The search for an augmenting path begins with vertex O. By performing depth _
first search. O finds the complete alternating path (0. N, M. L. K. J. I. G. E. D. C. B. A). Then P ~
‘~

finds the complete alternating path (P, Q. R, S. T). Then O and P proceed to increase the matching -
along the augmenting path (A.B,C.D.E.G.1.J.K.L. M, N, O.P.Q.R.S. T). :_
<3

-

X

AT s

! |

~ . e - I R S S A P PR . PRI . ‘_.".'_.' DA ‘
PO \'.\x AN '*.'_.x\\ T N T T e NN T et LT Y

Pl sl atalaluradnl -"‘L’L"L\;. (-_.1“- ATV S T PN A VAT A i S T SRy FR R SR P PN W

CHAPTER 4

ANALYSIS

4.1 Correctness

We show informally that the algorithm is correct. At the start of a phase, if the current

" matching M is maximum, then by Berge's Theorem there is no augmenting path. Thus the breadib
i:: first search for bridges in the phase reaches a level i such that no vertex v has either
13-4

evenlevel (v) =i or oddlevel (v) =i, and the algorithm halts.

If the current matching M is not maximum. then by Berge's Theorem there is an augmenting
path P with respect to M . Since the search for bridges continues until it reaches a level i where an
augmenting path is found. the algorithm finds an augmenting path and increases the matching.
Since the search for bridges at level i finds all the bridges at level i, and the algorithm tries to find
augmenting paths containing every bridge. the algorithm finds a maximal set of equal length aug-
menting paths. Since the algorithm begins a new phase if it finds an augmenting path at the current
search level, the augmenting paths it finds during each phase must be a maximal set of minimum

length augmenting paths.

4.2 Message Complexity

We determine the message complexity of our distributed matching algorithm.

Theorem 4.1: The message complexity of our distributed algorithm in the worst case is O(1V 152)
messages.

We prove Theorem 4.1 by adding up the total number of messages in the worst case. We first
determine the number of messages required during preprocessing to construct a spanning tree and
to select the root to be the leader. If we use the distributed algorithm of Gallagher. Humblet. and
Spira (1983) for minimum weight spanning trees. then the number of messages 18

OC V log IV i+ 1A). 1T we use the distributed algorithm of Awerbuch (1985b) for depth first

LT, et e e T e et T e, T AT N e T O _‘.._'.._-..4'. ‘<.._--.~-.._-’._-.._‘ DRI S S
R IR T e s o . N -

. - . et L L. LI S I -~
S e e T e e e e e e e e e e e e e e e e e s e e e e e e e e e A
PSR AR . A YA AR AL RO, VIOV WAL VORIV V. VR T PRI P Y TR P PRIV o

a1 -y -y TWYTTTVYY - TENTIEUVS W Bt % "I % T %
C"- o S A S Gt Sl Sl Sl el Ml S S A NSRRI " I e AR M b A FYTEEFTA A el ISR A A AN VLN VYN
- ® -) - -

search spanning trees, then the number of messages is O(|E 1).

Now we determine the number of messages required 1o compute a maximum matching using
our algorithm given that the spanning tree has been constructed. During each phase. the algorithm
finds a maximal set of minimum length augmenting paths. Hopcroft and Karp (1973) proved that
no more than O(1V 112) such phases are needed to find a maximum matching. During each phase,
the number of search levels is no more than |V |. Thus the total number of search levels required

by the algorithm is O(1V 137).

At the start of each phase. the leader broadcasts a STARTPHASE message. Since vertices send
the STARTPHASE messages along the spanning tree. there are 1V | STARTPHASE messages per
phase. Fach vertex convergecasts a READY message to end the initialization of a phase. Since the
READY messages are also sent along the spanning tree. the number of READY messages per phase is

also IV 1. Thus the number of STARTPHASE and READY messages for the algorithm is

001y 1372),
To conduct the search for bridges, the leader broadcasts a STARTBFS message for each search
level. Since the STARTBFS messages are sent along the spanning tree, the number of STARTBFS .fz
messages is |V | per search level. Thus the number of STARTBI'S messages for the algorithm is |
OV 132), &
During a phase. each vertex sends at most one BRIDGESEARCH message over an edge. Since E
at most two BRIDGESEARCH messages are sent over each edge. the number of BRIDGESEARCH
messages is O(1 £ 1) per phase. Thus the number of BRIDGESEARCH messages for the algorithm is :
OCIV IY21E 1), Since there is one BRIDGEREPLY message for each BRIDGESEARCH message. the ::;;
number of BRIDGEREPLY messages for the algorithm is also OC1V [V21 E). -
To report to the leader whether any bhridges were discovered at each search level. each vertex ::."
sends either a BRIDGES or NOBRIDGES message 10 its ST-parent. Since each vertex sends only one
ol these messages at each search level. the number of BRIDGES and NOBRIDGES messages for each “

search level is V' |. Thus the number of BRIDGES und NOBRIDGLES messages tor the aivorithm s '-'T

... ,] R TP o T T T ."~.'J?:'i\ {
AT ‘LIJ‘L‘Q‘.{&_Ii;i-AA; x(.n'- PN N '-1;.1';_A.LA.A.;IL f\-&\-\-

3

e 3
P40

-, -
]

el el
NN
R

P4

"‘- .lt "l

N
A

* I'

c'-/f.l.-'l".

49

o1V 152)

At each search level, each vertex sends at most one STARTAUGMENT message. Thus the
number of STARTAUGMENT messages for the algorithm is O(1V 132). Since there is one AUG-
MENTED or NOTAUGMENTED message for each STARTAUGMENT message. the number of

AUGMENTED and NOTAUGMENTED messages for the algorithm is also O(1V 15/2),

To compute the number of DFS messages. we consider two cases in which the algorithm sends

DFS messages.

In the first case. we consider alternating depth first search and backtracking where there are
no previously complete alternating paths. During each phase. the algorithm sends at most one DFS
message over an edge in each direction. If a vertex v receives a DFS message from a vertex w and
there is no alternating path from v to an exposed vertex, then v sends an ERASED message to w
and w sends no more DFS messages to v. If v finds an alternating path, then by our assumption, v
must belong to an augmenting path. Thus. after the algorithm increases the matching. v and w are
erased and w does not send another DFS message to v during the phase. Since there are | E | edges.

the number of DFS during each phase for this case is O(1 £ |).

In the second case, we consider the presence of previously discovered complete alternating
paths. If alternating depth first search finds an unerased vertex v with altpath (v) = true, then the
depth first search retraces edges of the alternating path. We count these additional DFS messages.
If the alternating path is still complete. then the number of additional DFS messages is exactly the
length of the path. If the alternating path is no longer complete. then the DFS messages sent in
order to find another alternating path are counted in the first case. Thus the only additional DFS
messages are those sent along previously complete alternating paths. Note that during each phase.
each vertex belonging 1o a previously discovered complete alternating path is visited by no more
than IV | different vertices. Since the combined lengths of the complete alternating paths during a
phase 18 at most 'V ' and each vertex of such a path can be ~isited no more than V! times, the

number of DI'S messages 1n the second case 15 gt most V7 per phase. Thus the total number ol

J' T T e '.'

3 O \\
o N -.\\\'\\.\\..\\ ~"

fataad B btetdecindadad

)

DFS messages for the algorithm is OCIV I1121E {) + O(1V 152) = O(1V 15/2),

A vertex sends a SUCCESS message when it discovers that it is a vertex belonging io a com-
plete alternating path. Similar to the second case with the DFS messages. a vertex v of a previ-
ously complete alternating paths may send more than one SUCCESS message if the alternating
depth first search finds another complete alternating path containing v. Thus the number of SUC-

CESS messages for the algorithm is O(1V [5/2).

During the alternating depth first search. if a vertex v receiving a DFS or BACKTRACK mes-
sage from a vertex w is unable to find an alternating path to an exposed vertex, v erases itself and
sends an ERASED message to w. The ERASED message has the effect of removing the edge (v, w)
for the remainder of the phase when performing alternating depth first search. Since there are 1 E |
edges. the number of ERASED messages during each phase is at most IE|. The number of

ERASED messages for the algorithm is O(IV |21 E 1).

During a phase. at most one BACKTRACK message is sent over each edge since the barrier
variables prevent redundant backtracking. Thus. there are at most {£ | BACKTRACK messages

per phase and O(!V Y21 E |) messages for the algorithm.

During the search for augmenting paths, a GO message is sent from a bridge vertex to its
buddy to signal the buddy to perform depth first search. One GO message is sent for each bridge.
Since there are at most | £ | bridges and each bridge is discovered at most once during each phase.
the number of G() messages is at most |E | per phase. The total number of GO messages is

OV IZLE).

Next we consider the TAKINGDCV and CLAIMDCYV messages. During each phase. there is at
most one TAKINGDCV message associated with each bridge. Thus the number of TAKINGDCV

messages for the algorithm is OCI1V 121 E).

During each phase. at most one CLAINDCV message is sent over each edge. This is ensured
by the bharrier variables which keep track of the DCV. Thus the number of CLAINIDCV messages

for the algorithm is OCIV Y21 E 1),

-. u' $
Lt

.

“
e,

N

A2

LY

IR
2

{ b;'.; el

ey,
Y

-
[N

O

(3]

% e 9
e

"

7’

N

P
LS

I.J

g
s

[y
(LA

[]

Ay

»
b %3

YR

~ S
LRV R

‘f.T!

' . % AT % YWl S IR TS
N NN I N Pt N I TR DA S TS

51

If the alternating depth first search finds a blossom. then the common vertex that is the base
of the blossom sénds BLOS messages which are forwarded by the intermediate vertices unti! they
reach the bridge vertices. After the bridge vertices receive the BLOS messages, they send BLOSSOM
messages 10 label the blossom. If there are no embedded blossoms. then each vertex of the blossom
receives at most one BLOS message and sends at most one BLOSSOM message. If there are embed-
ded blossoms, then a veriex of an embedded blossom may have to pass BLOSSOM messages for
labeling outer blossoms. During each phase. there are no more than |V | blossoms. Since each
blossom is discovered and labeled once. each vertex receives no more than |V | BLOS messages and
sends no more than |V | BLOSSOM messages. Thus the number of BL.OS and BLOSSOM messages
for the algorithm is O(1V 132). Since there is one BLOSSOMREPLY message for each BLOSSOM

message. the number of BLOSSOMREPLY messages for the algorithm is also O(1V [33),

Each pair of bridge vertices discovering a blossom sends one LABELED message after the blos-

som is labeled. Since no more than |V | blossoms are labeled during a phase, the total number of

LABELED messages is O(| V |3/2).

Only the vertices that are on an augmenting path send STARTINVERT messages. Note that if
an augmenting path is found at the current search level. then the algorithm proceeds to the next
phase. Since the augmenting paths discovered during each phase are disjoint and the vertices send
STARTINVERT messages along augmenting paths. each vertex sends at most one STARTINVERT
message. Thus, there are at most |V | STARTINVERT messages during each phase and a total of
O(1V 132) STARTINVERT messages for the algorithm. Since there is one ENDINVERT message

for each STARTINVERT message. the number of ENDINVERT messages for the algorithm is also
oIV 1¥2),

To determine the message complexity of the algorithm. we add up the total number of mes-

sages. Thus the message complexity of our distributed matching algorithm is O(1V 137) messages.

RS I

)

Cr e e .- . e A
N AR N RN S Sy G R A S A SO

4.3 Time Complexity

The time complexity of our distributed matching algorithm is the same as the message com-
plexity. The reason is because the algorithm finds augmenting paths one at a time. During each 'a
phase. O(1V 1?) messages are needed to find 2 maximal set of minimum length augmenting paths. Q

Thus. the time complexity of the algorithm is O(1V |15/2).

A ..

[2 B

e e e
.
1a'a’2

.
-

T VY

P e e g

TRV

L R}

<l 4l

v

'y ‘l*l

DN, AT o ENTN O PN IO .-.».r.-.-." 'J\I-'J,(_'J'I-- o LA
g \.’\. c’""\-f\,ﬂ. - "$""'\'\\ ‘\ \'\\ RS CSASENE SRS

53

CHAPTER 5

MAXIMUM MATCHING ON TREES

We consider the performance of our distributed algorithm on trees. Matching on trees is
much simpler since we do not need lo consider blossoms or common vertices when performing
depth first search. We show that our algorithm computes a maximum maltching on trees using

O(1V |) messages.

Theorem S5.1: Given a tree 7 with root r . the distributed matching algorithm finds a maximum

matching of 7 in one phase.

Before proving Theorem 5.1, we first present a sequential matching algorithm. Let T (x) be
the subtree of T rooted at x. Consider the following sequential algorithm called TREEMATCH.
which takes one vertex x as input. Order the children y,.y>. - .y, of x from left to right.
TREEMATCH is called recursively on each child of x. We show that after the execution of

TREEMATCH (x), T (x) has a maximum matching. It follows that TREEMATCH (r) finds a

maximum matching in 7.

TREEMATCH (x)

if x is a leaf then
return

fori =1ton
call TREEMATCH (y,)

if all children v; of x are matched then

leave x exposed
else

match x with the leftmost child y; that is exposed
end

Suppose TREEMATCH (y,) has been executed. Let 7 (y,) be the subtree of T rooted at y,
with a maximum matching. Suppose ¢ is an exposed vertex distinct from y, in 7(y;). Let / be

¢ s parent. Thus [/ iseither v, or a descendant of v, .

- - . e . Y -

NW#

Lemma 1: There is some child d of f matched with f .

Proof: Since TREEMATCH (y,) has been executed, TREEMATCH must also have been executed on
all descendants of y; and in particular on f . Note that once a vertex is matched. it remains
matched during the rest of the algorithm. Consequently. since e is exposed after the execution of
TREEMATCH (y,). e must have been exposed before the execution of TREEMATCH (f). Now
consider the invocation of TREEMATCH (f). After TREEMATCH is called on each of f 's chil-
dren, the algo;'ithm matches f with a child of f because at least one of f 's children is exposed.
Since e is exposed before the call TREEMATCH (f) and e remains exposed after the call, f must
have been matched with a childd of /.0

Theorem 5.2: After the execution of TREEMATCH (x), T(x) has a maximum matching.

Proof: We show by induction on the height of 7 (x) that TREEMATCH finds a maximum match-
ing. In the base case. x is a leaf. T (x) is comprised of vertex x and no edges. For a graph of one
vertex. the empty matching is maximum. Now assume the algorithm computes a maximum match-

ing on subtrees with height less than the height of 7 (x).

To prove T{(x) has a maximum matching, we show that T{(x) has no augmenting paths.
Assume 1o the contrary that after the execution of TREEMATCH (x) there is an augmenting path
P in T (x). By the inductive hypothesis, P cannot be contained entirely within a subtree rooted at
a descendant of x since any subtree of lesser height has a maximum matching. Thus P must con-

tain vertex x . In addition. P must contain at least one exposed vertex e in T (x) other than x.

We claim that at least one of the two exposed vertices of P is a descendant of a child v, of x.
We consider two cases.
Case I: If x is exposed. then all children of x are matched. Hence the other exposed vertex ¢ of P
must be a descendant of some child v, of x.
Case 2: If x is matched. then P must contain x and the child v, matched with x. Thus at least

one exposed vertex ¢ of P must be a descendant of some v, .

“:"z . ‘.:I_fq’\v',;f‘;ﬂ" ol ol

ZR

s

.

".

A A A & & A

SeN

-
+

-
»

2

e CEEE G % _t__ceme” B Dl

)
-
PN
A\
.
|
™
L}

m

L Ay g an =

‘o’ 8% 4%

3 2

l);

b

r}'h .y

Y

Calen

55

Since P is an augmenting path. there must be an alternating path leading from x toe. Let f
be the parent of ¢, and let g be the parent of f . Verlex g exists since e is a descendant of a child
of x. Note that g may be x. The edge (g. f) is free since by Lemma 1 f is maiched with some
child of f . The edge (f .e) is also free since e is exposed. Thus the path from x to e contains
two consecutive free edges and is not an alternating path. Thus P is not an augmenting path. This
is 2 contradiction. O
Proof of Theorem 5.1: When executed on trees, the method used to find augmenting paths in the
distributed matching algorithm exhibits the same behavior as TREEMATCH. We compute a
matching in 7 by executing one phase of the distributed matching algorithm on 7. Note that the
spanning tree for the distributed algorithm is exactly 7. Since at the start of the algorithm no ver-

tices are matched. the search for bridges at level O finds that every edge is a bridge.

The leader sends a STARTAUGMENT message to its leftmost child. A vertex x that is not a
leaf forwards the STARTAUGMENT message to its children from left to right one at a time. Ver-

tex x is matched with the first child y; that is not matched with a child of y,.

Now we compute a matching in 7 using TREEMATCH as follows. We first compute the
leader of T using the preprocessing of the distributed algorithm. Then the root r of T is the leader
L in the distributed algorithm. For each vertex x in T that is not a leaf, we order the children of
x from left to right. After the execution of TREEMATCH (r). each vertex x is either matched
with a child of x. maiched with the parent of x, or exposed. We examine the three cases.

Case I: If x is matched with a child of x, then x is maiched with the leftmost child v, of x that
is not matched with a child of y,. This is the same child v, that x is matched with in the distri-
buted algorithm because we sent the STARTAUGMENT messages in leftmost depth first search
order.

Case 2: let w be the parent of x. If x is matched with w, then x is the leftmost child of w that
is not matched with a grandchild of w. Thus either x is a leaf or all of the children v, o! x are

matched with a child of v,. In the distributed algorithm. x is also matched with w because + s

BRI
I'- ‘e

L a4

ALAA L GL AL GL S BE M

56

the leftmost child of w that is not matched with a grandchild of w .
Case 3. If x is exposed. then we consider the following subcases:

Subcase 3.1: If x is r. then all the children y, of x are matched. Thus each y, is matched with

some child of y,. In the distributed algorithm. each y, is also matched with some child of y, since
a3 each y, searches for an augmenting path before x does.

j Subcase 3.2: If x is not r, then w . the parent of x , is matched with some other child of w. Thus
ol

x was not the leftmost exposed child of w. In the distributed algorithm, w is also matched with

o some child of w other than x since x was not the leftmost exposed child of w .
b Since the matching of each vertex and edge of 7 in the distributed algorithm and in
p =
B TREEMATCH is the same. the matchings computed by the distributed algorithm and
:'.j TREEMATCH are the same. Since the matching found by TREEMATCH is maximum. the matching
-
< found by the distributed algorithm in one phase is also maximum. Thus the distributed algorithm
.
finds a maximum matching of 7 in one phase. O
-~
- We now determine the message complexity. of the distributed algorithm when executed on .
" ol
N4 A
’ trees. Note that during the phase. the breadth first search finds all the bridges in one search level. -
’
?
We assume that the algorithm knows a priori that the graph is a tree and halts after one phase. e
A Ka
P Theorem 5.3: Given a tree 7. the distributed matching algorithm finds a maximum matching in 7
~ 5
A . .
2 using O(1V 1) messages. N
) Proof: We use the distributed depth first search algorithm of Awerbuch (1985b) to construct the
, .
o spanning tree and select the leader. The number of messages required {or the preprocessing is -
4
,',' OCLE). But since the graph is a tree, 1K1 = IV | - 1. Thus the number of messages for the -3;
-
_ preprocessing is O(1V 1).
\' L4 ~ <
> Now we consider the number of messages used by the algorithm. Since the algorithm finds a ~
'-: maximum matching at the first search level, all augmenting paths have length 1. Thus we do not .
:]
: need Lo worry about hlossoms. common vertices. or backtracking, and can eliminate the associdated
>
}. messayes. _::
A
s
= ®
-
O e e B N R T o 4 R PO RS STt T L N S R S Rt PP SR o A
r _')‘.‘I..I,'I.'fsf.'r".":.v'.. A RRARANL SO, o PPN PN TN N N S S DN D A S,

o en

L VL A4
>
‘n"-_

PN YRl

9

Oy | AR
e

s 8

AR S SNENN

e P SR AR

ORI

r s

f

2y |

-'«

.’_..' -

r
WEREN

Y ': o

L4

a.

"y
LN S Y

57

We briefly consider the remaining messages. The messages used for synchronizing the algo-
rithm. e.g.. STARTPHASE. STARTBFS, BRIDGES, and STARTAUGMENT. are sent along the tree.
Thus there are O(1V |) of these messages per phase. The messages used to search for bridges and to
find augmenting paths, e.g.. BRIDGESEARCH. GO. and ERASED. may be sent along all edges. Thus
there are O(1E 1) = O(1V 1) of these messages per phase. Since by Theorem 5.1 the algorithm finds
a maximum matching in one phase. the number of messages required to compute a maximum

matching is O([V |). Thus the total number of messages required by the algorithm isO(1V 1). O

Suppose we have the tree shown in Figure 12a. Then the maximum matching compted by

the distributed algorithm and TREEMATCH (A) is shown in Figure 12b.

(a) (b)

Figure 12. A Maximum Matching on a Tree

. - A et e . .] L
ALY AN SN e
. .

MU AT

“u

AR] -
PRI

o

58
CHAPTER 6

CONCLLUSIONS

We have presented a distributed algorithm for maximum cardinality matching in general
graphs. In the worst case. our algorithm uses O(1V 13/2) messages and requires O(|V 132) time.
We also showed that our algorithm finds 2 maximum matching in trees using only O(1V |) mes-

sages.

We do not know if O(!V 132) messages is the minimum number of messages required to com-
pute a maximum matching in a distributed system. We could not construct a worst case example
for our algorithm that requires O(!V [3?) messages. In fact. it seems that the total number of
search levels required by the algorithm over all phases in the worst case is O({V |). Thus. if there
is a more efficient method of dealing with blossoms and the above conjecture is true. then the mes-

sage complexity of our algorithm can likely be reduced.

Other problems to consider are distributed algorithms for maximum weighted matching in
both bipartite and general graphs. Galil et al. (1986) presented an O(|E | IV llog!V 1) sequential
algorithm for finding a maximal weighted matching in general graphs. Galil (1986) surveyed some
parallel algorithms that have been recently developed for maximum cardinality matching and max-
imum weighted matching. We know of no distributed algorithms for maximum weighted matching

in either bipartite or general graphs.

'4

..

SN

?
I

f‘"l

(LN

N L 0 L " X LA LR £Y R Y s 3 FRART W] . Ay R Py 3 Uo Ry A *pd WA S - T AU K MWL 4

$ 59

oy

REFERENCES

3 Awerbuch, B. (1985a). "Complexity of Network Synchronization," J. ACM, vol. 32. no. 4. pp.

v

N 804-823.

- <,

N ':-; Awerbuch, B. (1985b). "A New Distributed Depth-First-Search Algorithm.” Inf. Proc. Let.. vol. 20,
Py no. 3, pp. 147-150.

- N Berge. C. (1957). "Two Theorems in Graph Theory.” Proc. Nat. Acad. Sci.. vol. 43, pp. 842-844.
RN
- Eckstein, D. (1977), "Parallel Processing Using Depth-First-Search and Breadth-First-Search.” Ph.D.
. ';-‘:. Dissertation. Dept. of Computer Science, Univ. of lowa, lowa City, lowa, 1977.

o
Edmonds. J. (1965), "Paths, Trees. and Flowers.” Can. J. Math., vol. 17, pp. 449-467.
ﬂ“.

N Even. S. and Kariv, 0. (1975), "An O(n?3) Algorithm for Maximum Matching in General Graphs."
e Proc. of the 16th Annual IEEE Sym. on Foundations of Computer Science, IEEE, pp. 100-112.
Sl
- N Gabow, H. (1976) "An Efficient Implementation of Edmonds’ Algorithm for Maximum Matching

on Graphs.” J. ACM. vol. 23, pp. 221-234.

: - Gafni. E.. Loui. M., Tiwari. P.. West. D., and Zaks, S. (1984), "Lower Bounds on Common

y “»

v

Lo Knowledge in Distributed Algorithms." Technical Report R-1017 (1984) Coordinated Science
* Laboratory. University of Illinois at Urbana-Champaign.

L

i Galil, Z. (1986). "Efficient Algorithms for Finding Maximum Matching in Graphs.” Comp. Surveys.
. vol. 18. no. 1, pp. 23-38.
; ::: Galil, Z.. Micali. S.. and Gabow. H. (1986). "An ((EV log V) Algorithm for Finding a Maximal
. Weighted Matching in General Graphs." SIAM J. Computing. vol. 15. no. 1. pp. 120-130.
" Gallagher. R. (1982), "Distributed Minimum Hop Algorithms." Tech. Rep. LIDS-P-1175 (1982).
Y M.LT.. Cambridge. MA.
2 . Gallagher, R., Humblet P.. and Spira, P. (1983), "A Distributed Algorithm for Minimum-Weight
L ?p_;anning Trees." ACM Trans. on Programming Languages and Systems. vol. 5. no. 1. pp. 66-
. -:: Hopcroft. J. E. and Karp. R. M. (1973), "An n?3 Algorithm for Maximum Matching in Bipartite
: - Graphs.” SIAM J. Computing, vol. 2. no. 4. pp. 225-231.
]
j ;Q Kameda. T. and Munro, 1. (1974), "A O(1V | | E |) Algorithm for Maximum Matching of Graphs.”
< Computing, vol. 12, pp. 91-98.
s v
v . Micali. S. and Vazirani. V. (1980). "An (VIV i |E) Algorithm for Finding Maximum Matching
j Te in General Graphs." Proc. 21st Annual IEEE Sym. on Foundations of Computer Science. 1EEE.
& pp. 17-27.
by o2

Papadimitriou. C. and Steiglitz. K. (1982). Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall. Inglewovod Cliffs, NJ.

2 & >
.
N [

f2 22880
1]
-

x|

.
fl [

ﬁ"ﬁ""\ 05y

SRS A s S I et 2 oy S S A At 8§ S A A R L RO (S CIAS S LS (O B "

AL M,

Ty

-, -
.V’

-~ LSS

§ o

>

>
Cd
G4
o
o

»

Peterson, P. (1985). "The General Maximum Matching Algorithm of Micali and Vazirani." Technical

Report T-163 (1985). Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign. =N
Schieber. B.. and Moran. S. (1986). "Slowing Sequential Alogrithms for Obtaining Fast Distributed .
and Parallel Algorithms: Maximum Matchings.” Proc. of the 5th Annual ACM Sym. on Princi- -~
ples of Distributed Computing. pp. 282-292. -
Segall. A. (1983), "Distributed Network Protocols.” /EEE Trans. Inf. Theory, vol. 29, pp. 23-25. <
o

Shiloach, Y.. and Vishkin, U. (1982), "An O(n’log n) Parallel MAX-FLOW Algorithm.” /. Algo-
rithms, vol. 3. pp. 128-146. KN
2

e gn a0 |
4

.
-

i

>

~
[

m

[

33

58S

»
[
-

L e — ..

A

«
0

O} I

e ','-" C -J"h\}.'- Al s LN \;‘:- [-.}-’}-_:’-“.:".’-_‘,\w -_}\}\.}-...:.;.'. ‘\‘-\ SN e\ e *‘- o ‘-._‘-'*'- ;-I\._\’_‘-._:.'.\. ‘. \i

X (KA

‘:'Z'w-l"n\:!'l:o'f gt ot SuP Bt Sa® lpd Tet I O 5 Gt as 000 a0 Byt v Bub ed Bt Ra? Bav St figb fgw fab Sk i s 5. RS Gab Buis it Ak e het Th §0 4} fus had ¥ ket et figd Ba" ¢
'

-
-

- - ™

> -

. 'n & B A _&

L4883

LY

(L
X
o

«'e B a2 8

A

4
\%\
R

e L S A

e -* ‘l\: BN \l. ‘-‘.:f \}\-"\)\-'\-'\h"‘a.\;‘\ g

